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Abstract

Ideal MHD models are known to be inadequate to describe various physical attributes of

a toroidal field with non-continuous symmetry, such as magnetic islands and stochastic

regions. Motivated by this omission, a new variational principle MRXMHD was developed;

rather than include an infinity of magnetic flux surfaces, MRxMHD has a finite number of

flux surfaces, and thus supports partial plasma relaxation. The model comprises of relaxed

plasma regions which are separated by nested ideal MHD interfaces (flux surfaces), and

can be encased in a perfectly conducting wall. In each region the pressure is constant,

but can jump across interfaces. The field and field pitch, or rotational transform, can also

jump across the interfaces. Unlike ideal MHD, MRxMHD plasmas can support toroidally

non-axisymmetric confined magnetic fields, magnetic islands and stochastic regions.

In toroidally non-axisymmetric plasma, the existence of interfaces in MRxMHD is

contingent on the irrationality of the rotational transform of flux surfaces. That is, the

KAM theorem shows that invariant tori (flux surfaces) continue to exist for sufficiently

small perturbations to an integrable system (which describes flux surfaces), provided that

the rotational transform is sufficiently irrational. Building upon the MRxMHD stability

model, we study the effects of irrationality of the rotational transform at interfaces in

MRxMHD on plasma stability.

We present an MRxMHD equilibrium model to investigate the effects of magnetic

field pitch within the plasma and across the aforementioned flux surfaces within a chosen

geometry. In this model, it is found that the 2D system stability conditions are dependent

on the interface and resonant surface magnetic field pitch at minimised energy states,

and the stability of a system as a function of magnetic field pitch destabilises at particular

values of magnetic field pitch. We benchmark the treatment of a two-volume system, along

with the calculations for background and perturbed magnetic fields to existing cylindrical

working.

An expression is formulated for the stability eigenvalues by creating a model for the

slab geometry system. The eigenvalues for system stability at a minimum energy state

are found to depend upon the rationality of the magnetic field pitch at resonant surfaces.

Various system parameter scans are conducted to determine their affect upon system

stability and their implications. While tearing instabilities exist at low order rational

resonances, investigating the instability of high-order rationals requires study of pressure-

driven instabilities.
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Chapter 1

Overview

Plasma is defined as the fourth state of matter; solid, liquid, gas and plasma, making

up 99.9% of our universe. Objects such as the Sun generate energy via nuclear fusion

at its core from the vast amounts of hydrogen stored within it. While nuclear fusion

occurs due to quantum tunnelling in the large mass of the Sun [19], scientists have been

utilising magnetic fields in confinement devices to study the physics of plasmas, from fusion

technology on Earth to astrophysical systems. Through nuclear fusion, a viable, clean,

and limitless, source of energy has been the driving goal of fusion energy.

1.1 Ideal MHD, Taylor Equilibria, and MRxMHD

In the 21st century, the main toroidal magnetic confinement fusion devices are the toka-

mak1, which is an axisymmetric torus, and the stellarator which allows 3-dimensional

and non-axisymmetric magnetic fields that are used to confine the plasma within. While

the stellarator has benefits over the tokamak configuration, such as the lack of a toroidal

plasma current and its associated instabilities, it introduces a higher level of complexity

in terms of construction and magnetic topology [20].

Fig. 1.1 shows the differently shaped flux surfaces within both devices, and so stel-

larators require additional mathematics and physics than tokamaks for analytical study

of their magnetic topology. Nested flux surfaces, island chains and regions of chaos within

the plasma where flux surfaces do not form may exist due to toroidal magnetic fields with-

out symmetry [20], as exhibited by this stellarator cross-section in Fig. 1.2. Flux surfaces

are magnetic surfaces tangential to magnetic fields, and chains of nested magnetic surfaces

each with its own magnetic axis are called magnetic islands [4].

Ideal MHD theory allows us to analytically study the macroscopic behaviour of plasma.

The fundamental idea in ideal MHD is that the magnetic fields are frozen in place; breakage

and reconnection of field lines is prohibited. While this is not a perfect representation of

the nature of plasmas, it allows valid mathematical analysis across a wide range of plasma

phenomenon such as kink instabilities. Utilising Maxwell’s equations and the equations of

gas dynamics, a set of ideal MHD equations are obtained [15]:

1Reverse Field Pinch (RFP) experiments allow magnetic field reversal at a certain internal point, and
are physically similar to tokamaks [3].
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4 Overview

Figure 1.1: Flux surfaces of a tokamak on the left and stellarator on the right. Hartmann,
D., 2004. Stellarators. Fusion Science and Technology, 45, 2T (2004), 64–76.

∂ρ

∂t
+∇ · (ρv) = 0 continuity, (1.1)

ρ(
∂v

∂t
+ v · ∇v) +∇p− 1

µo
(∇×B)×B = 0 momentum, (1.2)

∇ ·B = 0 solenoidal constraint, (1.3)

∂p

∂t
+ v · ∇p+ γp∇ · v = 0 internal energy, (1.4)

∂B

∂t
−∇× (v ×B) = 0 Faraday, (1.5)

E + v ×B = 0 Ohm. (1.6)

Frequencies, or eigenvalues, from the conservation of energy at equilibrium using ideal

MHD can inform about the stability of the system with a choice of initial perturbation,

and provides information on marginal stability.

Resistivity has been excluded from the above equations; Eq. (1.6) shows perfect con-

ductivity. The inclusion of resistivity modifies the following equations from Eq. (1.4) and

Eq. (1.6):

∂p

∂t
+ v · ∇p+ γp∇ · v = (γ − 1)η

∣∣j2
∣∣ , (1.7)

E + v ×B = ηj. (1.8)

In 1974, Taylor [38] published a new theory explaining the spontaneous existence of

reversed fields in toroidal plasmas in terms of plasma relaxation; after a fusion device

is initiated, the plasma is turbulent and after a certain timescale, the plasma enters a

relaxed state in which the energy of the system is at a minimum with certain boundary

conditions.2 Following this theory, plasma can only relax via reconnection of field lines

which requires non-zero resistivity in the plasma. For a plasma surrounded by a perfectly

conducting surface, the sum of magnetic energy, M and overall magnetic helicity, K,

M =

∫
B ·B
2µo

d3τ, (1.9)

K =

∫
A ·B d3τ =

∫
1

2
µH d3τ, (1.10)

2Without a defined boundary condition, the minimum energy in a system would be zero, i.e. no plasma,
only vacuum exists.
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Figure 1.2: Characteristics of flux surfaces and various regions in a stellarator.

Figure 1.3: Cylindrical model of a tokamak with concentric flux tubes, with perfectly
conducting wall W , ideal MHD barriers Ii, plasma regions Pi and the vacuum region V .
Hole, M.; Hudson, S.; and Dewar, R., 2007. Equilibria and stability in partially
relaxed plasma-vacuum systems. Nuclear Fusion, 47, 8 (2007), 746.



6 Overview

are minimised with the total helicity being invariant, with B = ∇×A, Lagrange multipler

µ, magnetic helicity in each regionH,A the vector potential, and d3τ for a volume element.

Equilibrium is satisfied with the Beltrami equation, ∇ ×B = µB; for a vacuum region,

helicity, H is nonexistent and so µ = 0. A general solution to the Beltrami equation can

be derived for an axisymmetric system [6], which provide expressions for B in the poloidal

and toroidal direction, or in this thesis, the y and z directions.

Taylor’s minimum energy principle, or variational principle, demonstrated that system

stability is dependent upon the relaxed state of the plasma, and this was extended [21, 25,

36] to a plasma-vacuum system. This work resulted in a set of equations with a solution

of an eigenvalue problem which is utilised in this thesis. From this eigenvalue, λ, the

stability of a plasma-vacuum system can be determined by a sign difference; positive λ

signifies system stability, while negative λ implies instabilities exist. In this work, nonlinear

evolution of unstable states, beyond the linear secular growth phase, is not addressed. That

is, we do not address or identify the state to which an unstable equilibrium evolves.

Instead of assuming continually nested flux surfaces for ideal MHD models, a finite

number of flux surfaces are assumed to exist in a relaxed plasma system. With the

origins of relaxed plasma theory now clarified, we introduce the Multi-Region Relaxed

Magnetohydrodynamics (MRxMHD) theory [21]. It is based on a generalisation of Taylor’s

relaxation principle, whereby total system energy is minimised subject to a finite number

of magnetic flux, helicity, and thermodynamic constraints [9]. Fig. 1.3 shows the number

of concentric flux surfaces are finite, where pressure is constant in each concentric flux tube,

and pressure jumps are across interfaces. MRxMHD theory has been shown to converge

back to ideal MHD when the amount of flux surfaces becomes infinite [9] and supports the

use of the theory as a tool to understand plasma-vacuum systems in a minimum-energy

state. It also provides the flexibility of increasing or decreasing plasma regions as necessary

for analysis, and provides the capability to describe 2D and 3D MHD structures such as

island chains and chaotic field regions, as described in Fig. 1.2.

We further concentrate our work onto the field lines and wave vectors. Field line

bending is concluded to be a driving force for instabilities around rational magnetic field

lines in many experimental plasma systems, i.e. internal kink modes and ballooning modes

[14]. In 2D tokamaks, equilibrium flux surfaces are guaranteed and fill the plasma volume;

in 3D stellarators (or real-life tokamaks), equilibrium flux surfaces can exist if the field

line is sufficiently irrational3 and survive perturbations [32].

3Irrationals, or rationality of field lines are in the context of rational numbers; see Sections 3.5.3 - 3.6.
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1.2 Thesis Outline

This thesis aims to utilise Taylor’s method of energy relaxation via the MRxMHD theory in

terms of system stability, and its dependence, if any, on the rotational transform rationality

of flux surfaces. The twist of field lines in toroidal magnetic system confinements are known

as magnetic rotational transforms, shown in Fig. 1.4. Field lines with rational rotational

transforms traverse around a given system, ultimately ’biting its own tail’ and are of finite

length. Field lines with irrational rotational transforms are of infinite length as they will

never arrive at its original point as it travels around its confinement system.

Figure 1.4: Field lines traversing a physical region where Ly and Lz are periodic lengths
in the y and z directions. Depending on its rotational transform, each line may or may
not meet its original starting point in the confinement system.

The motivation of the work presented here starts with the understanding that much of

the literature in plasma theory and experimental fusion exhorts the reader to use rotational

transforms at interfaces that are of an irrational nature, as these irrational surfaces are

most resistant to perturbations. The work of McGann et al. [32] is one such study, using

a Hamiltonian formulation in which the coordinates are free variables, allowing study of

3D systems such as stellarators as a simpler 2D system without losing information of the

original non-axisymmetric configuration.

In the Kolmogorov-Arnold-Moser (KAM) theory [8], flux surface existence is dependent

upon the irrationality of the rotational transforms at particular surfaces. However, this

theory only applies for non-axisymmetric 3D systems in which the flux surfaces are non-

integrable, i.e. the magnetic field line continuously loops around the axis of the 3D system

without encountering its starting point. Therefore, a direct comparison to a simpler

axisymmetrical Euclidean space (without any mapping of configuration space4, or phase

space5) is not possible as the fields are now integrable.

The Stepped Pressure Equilibrium Code (SPEC) [1] which is based on MRxMHD

provides a solution with individual flux surfaces within a chosen system equilibria, as

shown in Fig. 1.5. The effects of rotational transform on flux surfaces and pressure

gradients can be studied in great detail. McGann et al. [32] which used SPEC and the

pressure jump condition of MRxMHD:[[
p+

B2

2

]]
= 0, (1.11)

4Poloidal and toroidal directions.
54-dimensional.



8 Overview

found that the flux surfaces do indeed require a measure of irrationality to not be destroyed

by perturbations in 3D systems, thus being consistent with KAM theory, but this work

was done by investigating the robustness of flux surface to perturbations locally around a

fixed flux interface. While this work can be extended to multiple interfaces, it does not

utilise the minimisation of energy as postulated by Taylor [39], but studies flux surface

formation in equilibrium subject to a stepped pressure jump condition across the interface.

Another body of work by Loizu et al. [30] has shown that SPEC requires a rotational

transform discontinuity to calculate MRxMHD equilibria in a slab geometry in both pres-

sureless and nonzero pressure scenarios. Magnetic islands around a resonant rational

surface vanished as the rotational transforms ι-, on the internal surfaces around the mag-

netic island approached the resonant value ι- = 0 and retrieving the ideal MHD limit.

Interestingly, the value of ι- vanishes (for pressureless scenarios) or becomes discontinuous

(for nonzero pressure scenarios) when the magnetic island has completely dissappeared.

Figure 1.5: Poincaré plot generated by SPEC for a 3 plasma volume system shows the
existence of a magnetic island. Loizu, J.; Hudson, S.; Bhattacharjee, A.; and
Helander, P., 2015. Magnetic islands and singular currents at rational surfaces in three-
dimensional magnetohydrodynamic equilibria. Physics of Plasmas (1994-present), 22, 2
(2015), 022501.

The work in this thesis takes a step further from equilibrium states and studies the

relationship of a minimised energy state with flux surface rotational transform in the

simplest 2D system. In essence, instead of assigning a rotational transform to the flux

surface of interest and calculating energy states, this work focuses on minimising energy

and observe the behaviour of the flux surface rotational transform.

MRxMHD is used as it is the basis of SPEC, applicable for both 3D and 2D configu-

rations and allows pressure jump conditions. The choice of using a periodic slab model is

due to the axisymmetry of cylindrical and slab models; the Cartesian system of a slab is

the most fundamental model which allows rigorous analytical study of the effects of rota-

tional transforms within the plasma and at the interface of the plasma-vacuum boundary

using the MRxMHD method. In Chapter 2, we introduce the two main methods used to

analyse the stability of our chosen slab model. In Chapter 3, the results of both methods

are presented together, showing the instabilities that appear in the variational method are

confirmed by the tearing instability results. Section 3.5 details the slab model minimum

energy dependency upon a range of variables such as helicity and wavenumbers.
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Existing ideal MHD and resistive MHD theories are also shown to be unified under

MRxMHD in Section 3.8, by comparing stability conditions and underlying theory prin-

ciples. The MRxMHD plasma-vacuum slab is shown to only exhibit tearing instabilities

with no ideal instabilities present. Lastly, we extend our work into the realm of non-zero

pressure (Section 3.9); the discrepancy between the variational method and tearing insta-

bility calculations identified in Hole et al. [22] is confirmed, and may be resolved by a new

MRxMHD method that allows for pressure perturbations within the plasma (Section 4.1).

In this work, we will answer in detail the following questions:

1. How is the minimised energy state of a plasma-vacuum slab system driven by flux

surface rotational transforms?

2. Marginally stable solutions of λ = 0 at k · B = 0, or b = 0 have the smallest p

and q integers, which are the lowest-order rationals and represent the interface rota-

tional transform. In contrast, a 3D equilibria requires irrational interface rotational

transforms (see Section 1.2).

3. How will the tearing instabilities in a plasma-vacuum slab be confirmed, and what

effects will be seen in a zero and non-zero pressure system?

4. How will multiple resonances within the system affect stability calculations? What

differences will be found between a plasma-only and plasma-vacuum slab in terms

of system stability calculations, and the reason for discrepancies?

5. Does the inclusion of plasma pressure affect system stability for a slab model, and

how does it compare to the results found for cylindrical models?

6. Does the discrepancy between MRxMHD and tearing instability theory previously

found for a cylindrical model in Hole et al. [22] also exist in a plasma-vacuum slab

model?
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Chapter 2

Second Variation of Energy and Tearing

Instability Models

The variational principle outlined in this Chapter originates from Taylor’s relaxed plasma

theory [38] and was built upon by Spies and Lortz [36], Kaiser and Uecker [25], and Hole

et al. [21], among others to obtain a solution for the minimum energy of a plasma-vacuum

system. The principle of minimised energy utilises the first and second variation of the

total energy, and can be written as:

W = Thermal Energy + Magnetic Energy - Fixed Helicity - Total Mass,

W =
N∑
i=1

∫ (
p

γ − 1
+
B ·B
2µo

− 1

2
µH − νp

1
γ

)
d3τ, (2.1)

whereW is the total potential energy of the system, p is pressure, B is the magnetic field,

γ is the ratio of specific heats, and H is helicity. The variables µ and ν are Lagrangian

multipliers, and µo is the vacuum permeability constant.

y 

Vacuum 

z 

Wall 

Interface or 
flux surface 

X = 0 
Plasma 

x 

Figure 2.1: Slab model used for analysis.

The variational method used in the analysis of the plasma-vacuum system is applied to

a 2-dimensional slab model with equilibrium quantities independent of its periodic y and

z coordinates. Fig. 2.1 shows the slab model consisting of a plasma and vacuum region

separated by an interface or flux surface. Both ends of the slab (x = 0 and x = wall) are

perfectly conducting ideal MHD surfaces, such that n · b = 0, where n is the outward-

pointing unit normal vector and b is the perturbed magnetic field. This model allows the

11



12 Second Variation of Energy and Tearing Instability Models

study of interface perturbations in this singular interface model. Linking the slab model to

the cylindrical models utilised in aforementioned literature, the bottom of the slab and the

interface are analogous to the inner tori, Ii of the 2-dimensional cylindrical model shown

in Fig. 1.3. Due to the difference in co-ordinate systems, the magnetic field solutions are

similar yet greatly simplified. Instead of working with Bessel solutions, the background

magnetic fields and its perturbations become sinusoidal equations.

The variational method provides a set of equations from which an eigenvalue, λ is

computed, and from this solution, a parametric scan is conducted to analyse the effects

of the rotational transforms on the minimised energy of the system. To understand the

stability results from the variational model, another treatment based upon tearing mode

instability (Section 2.2) has been conducted. The main differences between the variational

MRxMHD model and the tearing mode instability treatment are,

1. The tearing mode instability treatment uses a helical perturbation around a pre-

scribed resonant surface.

2. The variational MRxMHD model treatment uses magnetic perturbations and does

not require a resonant surface to be explicitly provided.

The variational model analyses the behaviour of the system energy under perturbation,

but has implicit information regarding existing instabilities and resonant surfaces within

the plasma-vacuum slab. It does not require or provide information as to the location

of resonant surfaces, unlike the tearing instability calculations. As MRxMHD consists of

relaxed resistive MHD in the regions between interfaces and ideal MHD at the interfaces,

the tearing instability which is based upon resistive MHD theory contributes greatly to

the discussion on the nature of the instabilities in the MRxMHD results.

Once both models are constructed, calculation of the rotational transform at the in-

terface and the minimum value of λ for the variational model are available for analysis.

Further analysis shows that high and low values of minimum energy are dependent on the

rationality of the rotational transforms of their respective tearing instabilities, or tearing

modes. The rotational transform at resonance surfaces and the plasma-vacuum inter-

face can be identified as ι-, and ι- of high-order and low-order rationals are linked to the

behaviour of minimum λ in Chapter 3.

2.1 Variational Model

We introduce the variational model equations of MRxMHD, an eigenvalue problem of

the second-order variation as discussed in Spies and Lortz [36] and Hole et al. [21] for a

plasma-vacuum slab model.

Setting the first variation to zero, δW = 0, produces the following equations:

Plasma : ∇×B = µB, (2.2)

Interface :

[[
p+

B2

2

]]
= 0, (2.3)

V acuum : ∇×B = 0. (2.4)

The multiplier µ dimension is of inverse length. With constant p in plasma and p = 0

in vacuum, δ2W is minimised via the functional,
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L = δ2W − λNA, (2.5)

where λ is a Lagrange multiplier. The normalisation NA =
∫
d2σ|ξi|2 [21], where

ξi = ξi · n represents the normal interface displacement and d2σ is a surface element.

With the constraint of NA = 1, and setting δL = 0, the following equations are obtained:

Plasma : ∇× b = µb, (2.6a)

Interface : ξ∗i [[B · b]] + ξ∗i ξi[[B(n · ∇)B)]]− λξ∗i ξi = 0, (2.6b)

n · bi,i+1 = Bi,i+1 · ∇ξi + ξin · ∇ × (n×Bi,i+1), (2.6c)

V acuum : ∇× b = 0, (2.6d)

∇ · b = 0, (2.6e)

Wall : n · b = 0. (2.6f)

Eq. (2.6c) and (2.6f) are boundary conditions and do not originate from δL = 0. The

subscripts i, i+ 1 denote different regions of plasma as shown in Fig. 1.3. The term ξ∗i is

the complex conjugate. In the slab model case, they refer to both sides of the interface.

The energy term δ2W is reformulated as λ; by setting δL = 0 one identifies λ as an

eigenvalue which can be calculated from Eq. (2.6b).

Using a Cartesian system, ξin ·∇× (n×Bi,i+1) and ξ∗i ξi[[B(n ·∇)B)]] reduce to zero.

The Fourier decomposition of the perturbation of magnetic field, b and ξx, where m and

κ represent the wavenumbers in the y and z direction respectively [21], gives,

b = b̂ei(my+κz), ξi = Aei(my+κz), (2.7)

where b̂ and A are complex Fourier amplitudes, related via:

b = ∇× (ξ ×B). (2.8)

As the slab model used in this work has only one interface, solving for λ becomes a

single eigenvalue problem; multiple interfaces will result in a matrix eigenvalue problem.

Using the variational model equations, a solution for the Beltrami equation is found for

both the magnetic field, B and the perturbed magnetic field, b. The variables that remain

for parametric analysis are the constant pressure p, the wavenumbers m and κ, and the

Lagrange multiplier µ that originates from the conservation of helicity in the MRxMHD

model and also dictates the q-profile of the system.

Other than the boundary conditions described by Eq. (2.6c) and (2.6f), another criteria

for the perturbation b is zero at the plasma edge, x = 0. Working in the Cartesian

coordinate system, the equilibrium solutions of the Beltrami equation, ∇×B = µB are

found to be in the form of B = {Bx, By, Bz}:
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Plasma : B = {0, α cos(θ + µx),−α sin(θ + µx)} , (2.9)

V acuum : B =

{
0,

√∣∣∣∣ α2

1− β

∣∣∣∣ cos(δ + µL+ θ),−

√∣∣∣∣ α2

1− β

∣∣∣∣ sin(δ + µL+ θ)

}
, (2.10)

where By and Bz of the vacuum region are constants, α is the magnetic field magnitude,

and δ is the pitch angle by which the magnetic field in the vacuum can be offset from the

magnetic field in the plasma, thereby creating a jump in the angle of magnetic field across

the interface. Interface location for vacuum B is L = 1, β is related to the pressure term

p via β = 2p
B2
V

and B2
V −B2

P = 2p [25], where BP = ±α and BV = ±
√∣∣∣ α2

1−β

∣∣∣.

The term θ represents the angle of B(x = 0) and is detailed in Sections 2.2.2 and

3.5.2. The variable µ is a Lagrangian multiplier, but also represents plasma helicity. In

the vacuum region, Ampere’s Law, ∇ ×B = µoJ reduces to ∇ ×B = 0 as there is no

current, J , and so µ = 0 to represent this state.

Calculating the expression for b via the variational principle method also results in the

term
√
−m2 − κ2 + µ2, and plays a role in stability conclusions for ideal MHD and resistive

MHD work extensively studied by Goedbloed et al. [14]. This term will be revisited in

Section 3.8. For some choices of m, κ, and µ, imaginary terms are introduced into λ

and tearing instability parameter, ∆′ (Section 2.2). This issue only exists in the plasma

region as the vacuum region only has the term
√
m2 + κ2. To circumvent this problem, the

following equations were substituted in the course of deriving equations for perturbations

in both λ and ∆′:

F 2
p = m2 + κ2 − µ2, F 2

n = −m2 − κ2 + µ2, (2.11)

where Fp represents the possible values of κ2 +m2 that are larger than µ2, while Fn covers

the the region of values where κ2 + m2 is less than µ2. By using the above substitution,

two solutions for λ, ∆′, and its components are created; the parameter range is no longer

constricted as
√
m2 + κ2 − µ2 is always in the real domain.

The resulting solution for b in the Fp domain calculated via the second variation

Equations are as follows:
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bx : iα csch

(
Fpxint

√
−F 2

p +m2 + κ2

µ

)
sinh

(
Fpx

√
−F 2

p +m2 + κ2

µ

)
(m cos(θ + µxint)− κ sin(θ + µxint)), (2.12)

by :
αµ

(F 2
p −m2 − κ2)(m2 + κ2)

csch

(
Fpxint

√
−F 2

p +m2 + κ2

µ

)
(m cos(θ + µxint)

− κ sin(θ + µxint))Fpm
√
−F 2

p +m2 + κ2 cosh

(
Fpx

√
−F 2

p +m2 + κ2

µ

)

+ κ(−F 2
p +m2 + κ2) sinh

(
Fpx

√
−F 2

p +m2 + κ2

µ

)
, (2.13)

bz :
αµ

(F 2
p −m2 − κ2)(m2 + κ2)

csch

(
Fpxint

√
−F 2

p +m2 + κ2

µ

)
(m cos(θ + µxint)

− κ sin(θ + µxint))Fpκ
√
−F 2

p +m2 + κ2 cosh

(
Fpx

√
−F 2

p +m2 + κ2

µ

)

−m(−F 2
p +m2 + κ2) sinh

(
Fpx

√
−F 2

p +m2 + κ2

µ

)
, (2.14)

where xint is the abbreviation for xinterface, representing the interface position at equilib-

rium. The solution of b in the Fn domain sees a difference in terms of non-hyperbolic

functions.

With the expressions of b and various other variables stipulated above, an expression

and numerical result for λ via Eq. (2.6b) can be obtained. The stability of the system can

be found with a sign change, i.e. when λ is positive, the system is stable. Negative values

indicate instability and λ = 0 is marginal stability.
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2.2 Tearing Instability

Magnetic Island, Queensland? Sounds

like an unstable place.

Li Huey

The tearing instability is best described as the breaking of magnetic field lines from

their flux lines. In ideal MHD theory, the magnetic field lines are assumed to be frozen in

place; reconnection and breaking of these trajectories are not allowed. An example of flux

breakage can be seen in coronal ejections of the Sun and this class of instability was able

to be modelled with the inclusion of resistivity into existing theory which allows an energy

relaxation process. Tearing instabilities also allow the formation of magnetic islands, and

can become ’chaotic’ at large sizes [17], affecting the performance of a fusion device; in

Nazikian et al. [34], tearing-like structures affect edge-localised modes (ELM), where the

structures are formed by external magnetic coils in the effort to maintain the formation

of pedestals in ELM suppression1.

Figure 2.2: Depiction of the resistive layer around the resonant surface in the plasma.
Unterberg, E. Accesing High Normalized Current in an Ultra-low-aspect-ratio Torus.
ISBN 9780549385226.

Fig. 2.2 depicts the resistive layer in a plasma region, concentrated around a resonant

surface. This inclusion of resistivity is the basis of tearing instability theory. Away from

the resistive layer, ideal MHD approximations still hold, but at the resistive layer, tearing

instabilities can occur. The resonant surface is due to the magnetic field line topology

resonating with wave perturbations in the model. Resonant surfaces are flux surfaces

that are of modes decided by the q-profile (or safety factor) (further discussed in Section

1Although the method of creation and application of the tearing structures are not related to the work
in this thesis, the effects of tearing modes and magnetic islands can be found in many research areas of
fusion.
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2.2.2) which can be anywhere within the system and can be a location of destabilisation

or formation of instabilities.

The tearing instability parameter, ∆′ is the logarithmic derivative of the helical per-

turbation around a given resonant surface (Eq. (2.15a)). The solution for ∆′ is computed

using Eqs. (2.15a) - (2.15g) [37], this gives marginal stability (∆′ = 0) and the sign of ∆′.

To compute an Ohm’s Law growth rate for tearing modes, it must be solved in a resistive

layer around the resonant surface (as depicted in Fig. 2.2) and related to the outer region

solutions.

The solution for ∆′ is determined by the equations relevant to the outer region:

Tearing instability parameter, ∆′ =

(
∂χ̃

∂x+
s
− ∂χ̃

∂x−s

)
, (2.15a)

Equation of Motion : ρ

(
∂v

∂t
+ v · ∇v

)
= j ×B −∇p, (2.15b)

Velocity field : v (x, u) = ∇ϕ (x, u)× h+ υh (x, u)h, (2.15c)

Magnetic field : B (x, u) = ∇χ (x, u)× h+ g (x, u)h, (2.15d)

Helical perturbations : (2.15e)

χ (x, u, t) = χeq (x) + χ̃ (x) eΓt+iu, (2.15f)

g (x, u, t) = geq (x) + g̃ (x) eΓt+iu, (2.15g)

where u = mθ + κz and j = ∇×B
µo

. In the magnetic field equation, χ is the helical flux,

and g is the helical field [12]. The incompressible velocity field is similarly written as

the magnetic field equation, and thus ϕ and υh represent the perpendicular and parallel

components respectively. For a cylindrical model, h of Eq. (2.15c) and (2.15d) is defined

as f(r)∇r × ∇u and is a cylindrical vector orthogonal to ∇u. The metric term f(r) is

represented as 1
r(∇u)2

= r
m2+k2r2

[12]. The subscript eq refers to equlibrium quantities,

while Γ represents the growth rate of the helical perturbations.

The helical perturbation terms are of interest, and following the methodology of Tassi

et al. [37], the projections of the linearised equation of motion provides an equation repre-

senting χ̃ (Section 2.2.1). Thus, the tearing instability parameter ∆′ can be calculated and

compared with the variational principle eigenvalue parameter; ∆′ < 0 indicates stability,

and ∆′ > 0 indicates instability of the resistive tearing mode.

2.2.1 Solving for χ̃, the perturbation of the helical flux

In a Cartesian system, u = my + κz and f = 1
(∇u)2

= 1
m2+k2

. With the equations,

∇×B = µB, (2.16)

∇ ·B = 0, (2.17)

and projecting the linearised equation of motion (Eq. (2.15b)) along h and ∇r, the

resulting equations are:

geq(x) =
χ̃(x)

χ′eq(x)
g′eq(x), (2.18)

and
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∂χ̃(x)2

∂x2
+

[
geq(x)

χeq
′(x)

(
geq
′(x)

χeq
′(x)

)
′
+ (

geq
′(x)

χeq
′(x)

)2 − 1

f

]
χ̃(x) = 0. (2.19)

This differential equation has its counterpart in Eq. (28) of Tassi et al. [37]. The term

µ is constant in the plasma and a step function across the plasma-vacuum interface; with

the relationship µ =
geq′

χeq
′ from the linearising process, (

geq′(x)
χeq

′(x))
′

is zero everywhere except

at the interface.

The final differential equation is then of the form:

(−m2 − κ2 + µ2)χ̃(x) + χ̃′′(x) = 0. (2.20)

With Fp and Fn substitutions, χ̃ exhibits hyperbolic terms sinh and cosh for the Fp
terms, and sin and cos using Fn. The new expressions for χ̃ are:

χ̃(x) = eFpxC1 + e−FpxC2, (2.21)

χ̃(x) = cos(Fnx)C1 + sin(Fnx)C2, (2.22)

Figure 2.3: Diagram depicts the location of χ̃ with respect to the resonance layer and
plasma-vacuum interface. Each region has a different solution for χ̃ due to different coef-
ficient values.

as shown in Fig. 2.3 where χ̃(x)− represents the helical perturbation before a resonant

surface, χ̃(x)+ is after the resonant surface, and χ̃(x) in the vacuum region. The constants

C1 and C2 are determined by setting continuity of χ̃ at the resonant surface and interface,

the jump condition between plasma and vacuum, as well as the boundary conditions

χ̃(x = 0) = 0 and χ̃(x = xwall) = 0. One coefficient will be undefined due to the existence

of 6 coefficients with 5 boundary equations, and this should be a coefficient of the vacuum

perturbation to allow the perturbations in the plasma to be pressure dependent (Section

3.9). From Eq. (2.15a), the undefined coefficient is carried into the expressions for χ̃ and

will cancel out, providing a numerical solution for a given set of variables.

2.2.2 Rotational transform, q-profiles and resonant surfaces

The rotational transform is defined as the number of rotations of the poloidal magnetic

field per toroidal magnetic field rotation in a cylindrical coordinate system. As the current

model used in this work is a Cartesian system, the rotational transform becomes:
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ι- =
Lz
Ly

By
Bz

, (2.23)

where Ly and Lz are periodic lengths in the y and z directions. The q-profile of the system,

also known as the safety factor, is :

q =
1

ι-
=
Ly
Lz

Bz
By

. (2.24)

From the Beltrami solution Eq. (2.9) and (2.10) for plasma and vacuum, the rotational

transform and q-profile of both regions in the slab model are obtained. The q-profile utility

is illustrated in the calculation for tearing instabilities, as a resonant surface is required

to obtain a ∆′ value. Fig. 2.4 shows a plotted q-profile across the plasma-vacuum region

for a choice of µ. The q-profile equation can also written as:

q = − tan(xµ+ θ). (2.25)

For any location in the plasma volume, x of Eq. (2.25) may be replaced by the resonant

surface xrs to find a corresponding q value.

Figure 2.4: A q-profile selection plotted across the plasma-vacuum region with µ = 2.5, θ =
− cot−1 µ

2 and δ = 0. Plasma-vacuum interface is at x = 1.

The rotational transform value at the core of a cylindrical co-ordinate system, θ can

be selected as ι-o = Lzµ
4π , where Lz is periodic in the z direction [21]. Equating this value

to the slab model Eq. (2.24), θ = − cot−1 µ
2 by allowing Ly = 2πa, where a = 1, the

minor radius of the plasma region. Another option is θ = − cot−1 µ
4π if the slab is assumed

to have equal dimensions in the y and z direction, but with an arbitrarily chosen initial

rotational transform, which is set to the ι- of a cylinder. It is shown in Sections 3.5.2

and 3.5.4 that the choice of θ does not affect stability conclusions. From the expressions

above, it is shown that the q-profile and rotational transform of the interface itself can

be obtained by setting the appropriate value of x for the interface location. The relation

between the q-profile and wavenumbers can be seen in the equation k ·B = 0, where,
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k = mŷ + κẑ, (2.26)

B = Byŷ +Bz ẑ, (2.27)

along with Eq. (2.24) and Ly = Lz provides

q = −m
κ
. (2.28)

Thus by plotting a q-profile across the plasma-vacuum region, ι-, m and κ values can

be obtained for any choice of xrs, or resonant surface.
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2.3 k ·B Resonant Line

The function k ·B presents frequently in subsequent analysis, and its function for stability

analysis is described in this Section. The equation describing the relationship between

k ·B and λ stems from the ideal MHD shear Alfvén wave dispersion relation [2, 4, 15],

ω2 = k2
‖υ

2
A =

k ·B
√
µoρo

. (2.29)

The term k‖ is k along B, υA is the shear Alfvén speed which propagates along B,

and ω2 = λ for the case of a constant density ρo plasma. It is then easily seen that k‖ = 0

causes ω2 = 0.

To obtain the wavenumbers required for λ(xinterface) = 0, calculating k ·B = 0 in lieu

of λ(xinterface) = 0 drastically reduces computational time due to the complexity of the

λ solution. As λ is parabolic in the region of interest, i.e. marginal stability, there are

two solutions for λ = 0, and thus k · B = 0 is ideal to obtain λ(xinterface) wavenumber

information.

Finally, in Section 3.8, it is shown that k ·B plays a major role in unifying ideal MHD,

resistive MHD and MRxMHD theories cohesively in terms of Newcomb’s stability analysis

[35].
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Chapter 3

Results

You don’t look very relaxed.

Brett

In this Chapter, the variational and tearing instability results will be discussed in

tandem, as the variational method results require the tearing instability theory to shed

light on the instabilities found, and why they exist.

3.1 Variational Method Results

Figure 3.1: Dependence of λ on κ showing values of stability and instability, with normal-
isation NA =

∫
|ξ|2d2σ = 1, θ = − cot−1(µ2 ) and m = 1, µ = 3.

Fig. 3.1 shows the stability plot for a fixed value of µ and m over a range of κ. As

seen in the plot, there is a narrow region of κ for which λ is negative (system unstable).

The marginal stability points are when λ = 0 along the κ-axis.

Fig. 3.2 depicts how magnetic perturbations shape λ. The perturbation bx is in the

imaginary domain and is solved by considering the boundary conditions, bx=0 = 0 and

bxwall
= 0 where its coefficients apply to by and bz, both of which are in the real domain.

The term k ·B = 0 occurs at the plasma-vacuum interface (x = 1), and when λ = 0 with

b = 0 as introduced in Section 2.3.

23
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Figure 3.2: Plot of λ(NA = 1) and plasma region magnetic perturbations b (byP and bzP ),
and k ·B at x = 1. Variables used are θ = − cot−1(µ2 ), m = 1, µ = 3, and xinterface = 1.

By calculating for k·B = 0 with the variable values provided, the κ value is found to be

-1.11833 for this particular choice of variables shown in Fig. 3.2. Using the Mathematica

function FindRoot, λ = 0 results in an identical κ value where k · B = 0. The same

Mathematica function with a starting search value closer to the other zeroth point of λ

provides the κ value of 0.238404. These two values are indicated by the grey vertical lines

in Fig. 3.2.

It is shown in Fig. 3.2 that when the magnetic perturbations are both zero, λ is zero,

but the converse is not always true. The second zeroth point does not correspond to a

vanishing perturbation and the unstable region is theorised at this point to be a tearing

instability, which is subsequently proven by incorporating the tearing instability model

to test for result correlation (Section 3.2). Fig. 3.3 shows the behaviour of the magnetic

perturbations on the vacuum side of the interface also intersecting at the λ = 0 line,

thereby confirming when all perturbations in the model are zero, the system is marginally

stable.
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Figure 3.3: Plot of λ(NA = 1) and vacuum region magnetic perturbations b (byV and
bzV ), and k · B at x = 1. Variables used are θ = − cot−1(µ2 ), m = 1, µ = 3, and
xinterface = 1.
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3.2 Tearing Instability Results

As described in Section 2.2.1, the solution of Eq. (3.1a) - (3.1e) is dependent upon its

boundary conditions. These equations describe the perturbation in each region of the

plasma-vacuum model for Fp and Fn, where xrs denotes the resonant surface:

χ̃(x) = e−FpxC1P + eFpxC2P 0 < x < xrs, (3.1a)

χ̃(x) = cos(Fnx)C1N + sin(Fnx)C2N 0 < x < xrs, (3.1b)

χ̃(x) = e−FpxC3P + eFpxC4P xrs < x < 1, (3.1c)

χ̃(x) = cos(Fnx)C3N + sin(Fnx)C4N xrs < x < 1, (3.1d)

χ̃(x) = ex
√
m2+κ2C1V + ex

√
m2+κ2C2V 1 < x < xwall. (3.1e)

Fig. 3.4 verifies the continuity calculations for χ̃ at the resonant surface and plasma-

vacuum interface, and the perturbation is zero at the vacuum wall and the plasma edge.

The plasma-vacuum interface equation required to obtain a coefficient is found in Hole

et al. [22]: [[
χ′0
χ̃′

χ̃

]]
=

[[
χ′0
g0

χ0
µ

]]
. (3.2)

Thus, all the coefficients denoted with C in Eq. (3.1a) - (3.1e) are solved and the

tearing instability can be calculated. To ensure the perturbation of the helical flux, χ̃

of Eq. (2.21) and Eq. (2.22), are continuous across the plasma-vacuum region, Fig. 3.4

displays χ̃ plotted with respect to the plasma length.

Figure 3.4: Plot of χ̃ demonstrating continuity across the plasma-vacuum region, with a
resonant surface located at xrs = 0.9, with xwall = 1.1.

The tearing instability calculation requires a resonant location within the chosen model,

as described in Section 2.2. This is achieved by choosing a q-profile for the plasma-vacuum

region, and obtaining m and κ values from the q-profile.

Fig 3.5 illustrates the method of finding κ; if the resonant surface is chosen to be at
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Figure 3.5: Q-profile plot for θ = − cot−1(µ2 ) and µ = 2.5 across the plasma-vacuum region
illustrates the method for finding κ.

xrs = 0.6, the value on the q-profile axis is −1.08308. With Eq. (2.28), and a chosen

value for m, i.e. m = 1, κ = 0.923295 is calculated. This method can be used to calculate

m for a given κ as well. The chosen wavenumber for benchmarking purposes is m = 1.

Calculating the components of logarithmic differentiation of the tearing mode equation,

Eq. (2.15a), we compute −∆′ across the plasma region for any value of resonant location,

where the positive region signifies stability and the negative region is unstable.

Figure 3.6: Plot of ∆′ across the plasma region. Note a singularity at the equilibrium field
reversal point around the blue datapoints, and another singularity as xrs approaches the
step in µ at the plasma-interface of x = 1.

In Fig. 3.6, the red data points denote the Fn region (where κ2 + m2 < µ2), and the

blue data points denote the Fp region. The first singularity of −∆′ is when the q-profile is

zero at the magnetic field line reversal radius, xrs = 0.269896, where Bz = 0. The q-profile
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goes to infinity when By = 0. The second singularity of −∆′ is when the resonant surface

approaches the interface from the left where the µ value changes as a step function; this

tearing instability behaviour is documented in Fig. 6. of Tassi et al. [37]. We then compare

the variational model to the tearing instability model. Fig. 3.7 compares −xrs∆
′ and λ

as a function of κ; stability regions are indicated by a positive magnitude and vice versa.

The instability seen in the variational or minimum energy plot is a tearing instability with

the resonant surface located within the plasma region, and −xrs∆
′ approaches negative

infinity as the resonant surface approaches the plasma-vacuum interface, marked by the

vertical line.

Figure 3.7: Tearing mode parameter, −xrs∆
′ (orange dots) and variational parameter λ

(solid red line) as a function of κ, m = 1, and µ = 2.5.

Note that the −∆′ data points do not cover a region of the κ axis to the left of the

vertical gridline in Fig. 3.7 which we will call Region A; this is due to the lack of resonant

surfaces in the plasma-vacuum slab for Region A. To illustrate this point, we select two κ

values; κ = −0.260101 at λ = 0 (marked by the vertical gridline in Fig. 3.7), and κ = −1

which is in Region A.

Fig. 3.8 shows the µ = 2.5 q-profile with marked q-profile values for κ = −0.260101

and κ = −1.0 found by Eq. (2.28). As expected, qκ=−0.260101 corresponds to a resonant

surface at the plasma-vacuum interface, while qκ=−1.0 does not correspond to any resonant

surface along the plasma-vacuum slab.

When there are no resonant surfaces observed in the plasma-vacuum slab for a given

choice of m and κ, tearing instabilities cannot develop, and so λ can only be stable

which is shown in Region A. The existence of other instability types such as external kink

instabilities does not exist in the slab configuration and is elaborated in Goedbloed and

Dagazian [16] and the work in Section 3.8.
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Figure 3.8: Eq. (2.25) with respect to xrs. qκ=−0.260101 corresponds to a resonant surface,
while qκ=−1.0 does not correspond to any resonant surface.
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3.3 Normalisation

In Section 2.1, the normalisation is based upon interface displacement, NA =
∫
|ξi|2d2σ

where d2σ is a surface element, and we set this to a constant 1 for our initial calculations

for λ. NA = 1 enables evaluation of minimum system stability from the sign of λ > 0

being stable and λ < 0 representing the unstable regions. This choice of normalisation is

independent of volume and plasma helicity, as the interface displacement is only dependent

upon displacement magnitude and wavenumbers, m and κ [21].

After λ is obtained from second variation equation Eq. (2.6b), a different normalisation

[39] may be multiplied to the eigenvalue to provide a physical definition to the eigenvalue in

terms of plasma volume and helicity which are dependent upon the dimensions of the slab

and µ. The following work explains the approach and the results of different normalisation

choices.

In Spies and Lortz [36], the functional,

L = δ2W − λNB, (3.3)

is used to evaluate the eigenvalue λ with NB =
∫
b2 d3τ = 1 and b = ∇ × a. For

comparison in the region of instability across a range of µ, the constant volume integral

of NB is instead retained as a function of µ. Replacing NA = 1 with µ-dependent NB

normalisation requires the following equations:

L = δ2W − λ1NA = 0, (3.4)

L = δ2W − λ2NB = 0, (3.5)

λ2 = λ1
NA

NB
. (3.6)

Figure 3.9: Plot of NB showing the behaviour of this normalisation choice over the µ-range.

Fig. 3.9 shows NB over a µ range, and Fig. 3.10 shows the effect of NB upon the

magnitude of λ; magnitude of λ is dependent upon a chosen normalisation. Using the

volume integral normalisation provides an identical λ result with a scaling factor difference.

By inspection of Fig. 3.10, the zero crossing points are more distinct with NA = 1, hence

further discussion will feature stability results based upon NA = 1, unless stated otherwise,
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namely in Section 3.5 and Section 3.6. The κ values at minimum and marginal stability also

have not been modified by the change in normalisation. This is a key piece of information

as the minimum stability of the slab system will ultimately depend on the m and κ values

at resonant surfaces (Section 3.6).

(a) µ = 1

(b) µ = 3

Figure 3.10: Overlaid λ plots with a grey vertical line denoting the κ value for minimum
stability on both plots.

Fig. 3.11 displays λ of different normalisations across a range of µ. The zeroth points

of λ in Fig. 3.11a are now singularities and vice versa in Fig. 3.11b; in Section 3.8, the

importance of the singularities are shown to be related to the µ limit value of resistive

MHD instability as described in Gibson and Whiteman [13].
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(a) λ with NA = 1.

(b) λ with NB .

Figure 3.11: The effect of different normalisation choices on λ over a µ range, with κ = 1,
m = 1, θ = − cot−1(µ2 ).
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3.4 Multiple Resonances

It is remarked that the tearing instability, −∆′ calculation only assumes one resonant

surface exists within the plasma. Fig. 3.12 shows that the choice of µ for the q-profile

dictates the presence of single or multiple resonant surfaces within the plasma. The

tearing model can be extended to account for multiple resonant surfaces with identical

wavenumbers, but requires additional terms to reflect the additional resonances, while the

variational model requires no change. Therefore, as shown in Fig. 3.13, −∆′ calculations

would no longer completely agree with the variational model for multiple resonant surfaces.

(a) µ = π is maximum µ before multiple resonances occur in the q-profile.

(b) At µ = 4, multiple resonances form as there are two identical values of q
but at different resonant locations.

Figure 3.12: The existence of multiple resonant surfaces at higher µ values.
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Figure 3.13: λ (solid red line) and −∆′ (dots) plot comparison at µ = 4.
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3.5 Minimum Stability

Perhaps you will find relaxation from

an activity that resonates with you.

Li Huey

This Section explains how the minimised energy state of a plasma-vacuum slab system

is driven by flux surface rotational transforms, as mentioned before in Section 1.2. To un-

derstand the relationship between slab model minimum stability and interface rationality,

the minimum stability of a variable set is sought, instead of the marginal stability point,

which we know to be k ·B = 0.

The lowest-energy relaxed state of the system occurs at minimum λ which can have a

sign of positive or negative, and a physical interpretation of λ is supplied in Section 3.7.

This minimum stability calculation is dependent upon various global parameters, such as

pressure and the magnitude of B but the most crucial components are µ, m and κ. As

rotational transform can be calculated from wavenumbers, rotational transform rationality

that correspond with system minimum stability and marginal stability can be studied.

The initial chosen ranges for minimum stability calculation are 0 < µ < π, −20 < m <

20 and −20 < κ < 20 with µ step size, ∆µ = π
800 and wavenumber step size ∆m = 0.3

and ∆κ = 0.3. For each µ value, a spectrum of λ is calculated and tabulated by sweeping

across the κ and m range. The minimum λ value is then selected via the Mathematica

function Min, alongwith its corresponding m, κ, and µ values. The rotational transform

of the interface is calculated from each µ and plotted against its minimum λ as ι-interface.

This process takes approximately 3 hours and 18 minutes for a full run and calculation

time correlates linearly with wavenumber step sizes.

While the choice of µ range is discussed in Section 3.4, the choice of wavenumber range

is for comparability purposes with Hole et al. [21], while the step size choice is a matter of

computational time cost and accuracy in finding true minimum stability of λ as presented

in Section 3.5.1. ‘Mirrored wavenumbers’ may also occur, where two combinations of

wavenumbers are found to be identical, but sign inversed, i.e. m = 1, κ = −1 for λ = 0.1

and m = −1, κ = 1 for an identical λ value. The sign change of the wavenumbers reflects

magnetic fields travelling in opposite directions, thus producing the same stability results

but with mirrored wavenumber values.

A sample from the dataset for the aforementioned variable settings appear in Table

3.1.

ι-interface µ κ m Minimum λ

0.560461 0.341648 1.9 -3.5 -0.00197053
0.568153 0.345575 1.6 -2.9 -0.00218405
0.575895 0.349502 -1.4 2.5 -0.00230282

Table 3.1: Dataset sample of minimum λ results using θ = − cot−1 µ
2 .

Fig. 3.14 is produced by plotting the minimum λ values with respect to ι-interface where

the normalisation, once again, only affects the magnitude of minimum λ as discussed in

Section 3.3.

Fig. 3.15 demonstrates the effect of the normalisation value changing between < 1 to

> 1 upon minimum λ; the changeover point is marked by the vertical gridlines in Fig. 3.9,

one of which corresponds to µ = 2.20256 or ι-interface = −0.105865 for θ = − cot−1 µ
2 . The
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(a)

(b)

Figure 3.14: Minimum λ(NA) (dashed line) and λ(NB) (solid line) for ± ι-interface. λ(NB)
out of plot range in (b) due to singularity of NB. λA, λB, λC , λD denote the conspicuous
peak and trough regions, and are investigated further in Section 3.5.3.
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change in normalisation value affects the overall trend of minimum λ shown by Figs. 3.14

- 3.15 and does not account for minimum λ magnitude spikes in Fig. 3.14.

Figure 3.15: Effect of normalisation on minimum λ(NA) (dashed line) and λ(NB) (solid
line) in the − ι-interface range. The ι-interface = −0.105865 value is denoted by the grey
vertical line.
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3.5.1 Wavenumber step size effect on minimum λ

Figure 3.16: Dependence of minimum λ datapoints on wavenumber step sizes shown by
λ1rs and λ2rs, with ∆m = 1,∆κ = 1.

In Section 3.5, the wavenumber step size used was ∆m = 0.3,∆κ = 0.3. Using larger

step sizes results in less accurate minimum λ values, and is demonstrated in Fig. 3.16 by

using ∆m = 1,∆κ = 1 to obtain minimum λ.

From initial scans of λ across a κ range with nonzero m and varying µ shown by Fig.

3.1, it was found that an unstable λ exists for all non-zero µ values and so minimum

λ must be negative1; this is corroborated by Fig. 3.14a. However, a lower wavenumber

resolution (or larger ∆m and ∆κ), may result in minimum λ data points which are positive

as displayed in Fig. 3.16; this indicates an inaccurate representation of minimum stability

due to the low resolution.

To illustrate this claim, the values of λ2rs are ascertained to be µ = 0.526217, κ = −1,

and m = 1. Fig. 3.17a plots λ for the choice of µ and m associated with λ2rs across a

range of κ. The position of λ2rs is marked by the vertical gridline. Similarly, Fig. 3.17b

plots the location of λ1rs(µ = 0.518363, κ = −19, and m = 20). The positive values of

λ1rs and λ2rs indicates the chosen ∆m and ∆κ in Fig. 3.16 are too large to access the

unstable region of their respective λ.

Furthermore, the resonant surfaces of all the data points in Fig. 3.16 are calculated

using their associated m, κ, and µ using Eq. (2.25) and Eq. (2.28). The grey vertical lines

represent the minimum λ data points with xrs > 1, i.e. resonant surface not within the

plasma region. For instance, m and κ of λ2rs does not correspond to an xrs (Eq. (2.25)

and (2.28)) while m and κ of λ1rs generates xrs = 0.976462.

Tearing instability calculations result in indeterminate −∆′ for the vacuum region2,

as the vacuum region q-profile is constant and equal to qxrs=interface. However, λ does not

have this limitation as it exists and is stable when there are no associated resonances as

explained in Section 3.2.

As the choice of ∆m and ∆κ can affect the solution for minimum λ and the existence

of resonant surfaces, ∆m and ∆κ must ensure minimum λ is negative with xrs < 1 for

comparison purposes between λ and −∆′ models.

1This is later compared to the work of Goedbloed et. al. in Section 3.8.
2To specifically address xrs > 1, −∆′ must be reformulated again in terms of resonant surfaces existing

externally of the plasma region, but will result in the indeterminacy once again.
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(a) Associated wavenumbers of λ2rs (vertical gridline) are κ = −1 and m = 1.

(b) Associated wavenumbers of λ1rs (vertical gridline) are κ = −19 and m = 20.

Figure 3.17: The locations of λ1rs and λ2rs on their respective λ plots and the unstable
regions. The linear blue line is k ·B.
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3.5.2 Effects of ι- at x = 0, or θ

We now analyse the rotational transform ι-(θ) at B(x = 0), and find that the minimum

stability characteristics across a range of ι- are essentially independent of θ. This is proven

by comparing the two options for θ = − cot−1 µ
2 and θ = − cot−1 µ

4π in terms of minimum

λ.

By changing θ, the interface rotational transform, ι-interface is also modified via Eq.

(2.24) and (2.25). Fig. 3.18 shows the difference in terms of ι-interface for the two θ, where

ι-interface is compared at an arbitrary µ, i.e. µ = 1.86 marked by the vertical gridline.

The ι-interface = −0.583016 for Fig. 3.18a and ι-interface = −2.12374 for Fig. 3.18b are

significantly different values.

(a) ι-interface for θ = − cot−1 µ2 across a range of µ.

(b) ι-interface for θ = − cot−1 µ
4π across a range of µ.

Figure 3.18: Difference in terms of ι-interface for two θ across a µ− range.

Fig. 3.19 data points result from minimum λ utilising these two θ options, and from

inspection, the minimum stability plot values mainly differ in terms of magnitude. This

implies the θ, and subsequently, ι-interface are not criterions for stability, as minimum λ has

not significantly shifted along the ι-interface axis to account for the large difference between

θ = − cot−1 µ
2 and θ = − cot−1 µ

4π .
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Figure 3.19: Minimum λ(NB) with θ = − cot−1 µ
2 (purple line), and θ = − cot−1 µ

4π (gray
line).

As ι- of minimum λ, represented as ι-rs, is not equivalent to interface ι-interface (minimum

λ is of xrs < 1), we look to ι-rs for both choices of θ. Fig. 3.20 compares ι-rs from the

m and κ for each minimum λ data point. Once again, it is seen there is minimal plot

characteristic difference aside from a magnitudinal change. A vertical gridline is provided

to enable visual comparison of the minimum λ data points across the two plot lines.

Figure 3.20: ι-rs for θ = − cot−1 µ
2 (blue line) and θ = − cot−1 µ

4π (purple line).

This exercise confirms that ι-rs and ι-interface of minimum λ are essentially unchanged

with different θ; this is a useful point as ι- can be written in terms of wavenumbers m and

κ, and later enables the study of its rationality with respect to minimum stability.

The main questions at this point are as follows:

1. What is the relationship between stability characteristics of minimum λ, ι-rs and

ι-interface?

2. Can the wavenumbers for marginal stability, λ = 0 assist in investigating the ratio-

nality of ι-interface?
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3.5.3 Peak stability of minimum λ dependence upon the ι-rs and ι-interface

To address the first question, we investigate the behaviour of resonant surfaces in the form

of rationals through ι-rs = −κ
m where m and κ come from the data points of minimum λ.

It is found that the minimum λ values correlate to ι-rs in terms of high and low-order

rationals.

We begin this Section with Fig. 3.21 where the y-axis represents ι-rs of all minimum

λ(NA) data points in Fig. 3.14. The resulting graph exhibits characteristics of a Cantor

function, also known as a Devil’s Staircase, due to the monotonically increasing “staircase”

at which the plateaus of numbers are rationals while jumps between plateaus are inhabited

by irrationals [26, 27]; for our purposes, irrationals are represented as high-order rationals

(see Section 3.6).

Figure 3.21: ι-rs of minimum λ plotted against ι-surface. Four regions of interest are marked
as ι-A, ι-B, ι-C , and ι-D.

The left column of Fig. 3.22 presents the four regions of interest (λA−λD) labelled in

Fig. 3.14. These regions of minimum λ have a corresponding plot of its ι-rs (labelled as

ι-A − ι-D in Fig. 3.21) on the right column of Fig. 3.22.

Data points of interest are marked by vertical gridlines and are related in the following

fashion: the first vertical gridline on the left in Fig. 3.22a corresponds to the first vertical

gridline in Fig. 3.22b, and so on.

In Table 3.2, ι-rs of Fig. 3.22 marked data points are listed in terms of rationals by

taking ι-rs = −κ
m and applying the Mathematica function Rationalize. Firstly, note that

the peak minimum λ values generally consists of a higher order rational, i.e. large integers

for the numerator and denominator, and is larger than its neighbouring data points, with

Fig. 3.22a being the outlier.

Secondly, it is found that the peak rationals of Table 3.2 rests just before a plateauing

value of ι-rs as shown in Figs. 3.22e - 3.22f, and Figs. 3.22g - 3.22h, with Figs. 3.22a -

3.22b as the outlier once again.

The disagreement of data in Figs. 3.22a - 3.22b with the other regions of interest is an

example of the importance in using sufficiently high resolution. The discrepancy is proven
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(a) The λA region of minimum λ in Fig. 3.14. (b) The ι-A region of Fig. 3.21.

(c) The λB region of minimum λ in Fig. 3.14. (d) The ι-B region of Fig. 3.21.

(e) The λC region of minimum λ in Fig. 3.14. (f) The ι-C region of Fig. 3.21.

(g) The λD region of minimum λ in Fig. 3.14. (h) The ι-D region of Fig. 3.21.

Figure 3.22: Peak and trough characteristics of minimum λ and its associated resonant
surface.
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Fig. Vertical gridline (left) Vertical gridline (middle) Vertical gridline (right)

Fig. 3.22a 41
85 2(peak) 29

55

Fig. 3.22c 31
32

71
70(peak) -

Fig. 3.22e 47
25(peak) 2

1
37
17

Fig. 3.22g −29
26(peak) −1

1 −19
22

Table 3.2: Dataset of ι- at minimum λ(θ = − cot−1 µ
2 ).

to be an artefact of ∆µ choice; in Fig. 3.23, ι- ∈ (0.493305, 0.507923)3, is divided into 20

smaller data points for minimum λ recalculation. The dashed gridline denotes the location

of the peak in Fig. 3.22a as comparison; the new peak minimum λ value has shifted to

the left of this line.

Figure 3.23: Minimum λA region with smaller ∆µ.

The new peak minimum λ value and its neighbouring data points are marked along

the vertical solid gridlines of Fig. 3.23 and its rationals are listed in Table 3.3. The new

set of data agrees with initial findings where the peak value for a region of interest is of

the largest (or highest-order) rational among its neighbouring data points.

Fig. Vertical gridline (left) Vertical gridline (middle) Vertical gridline (right)

3.23 73
149

76
155(peak) 1

2

Table 3.3: Rationals of gridlines in Fig. 3.23

Next, the dips in minimum λ, or troughs, are addressed; these regions of stability

appear as plateaus on the right column plots of Fig. 3.22. The plateaus are of low-order

rationals, i.e. 2
1 as seen in Fig. 3.22f, and the wavenumbers of the trough region are all

identical, i.e. Fig. 3.24 represents a minimum λ trough, and two arbitrary data points

marked within the trough are of m = 0.1 and κ = −0.2.

3This range consists of three data points around the peak value of Fig. 3.22a, and their µ-values are
µ = 0.306, 0.310232, 0.314159.
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Figure 3.24: A minimum λ trough around ι-interface = 2.0.

A well-defined trough of minimum λ (and plateau in ι-rs), supports tearing instability

theory where low order resonant wavenumbers are destabilising in a chosen system. The

width of the ι-rs plateau is reduced by higher order rational approximations with higher

wavenumber resolution, while the plateau itself is localised around a low-order rational,

later shown in Fig. 3.31.

Fig. 3.25 compares minimum λ with ∆m = 0.3 and ∆κ = 0.3, with minimum λ

obtained with machine-precision wavenumber values (a labour-intensive manual process!).

However, the minimum λ value at the middle of the trough is similar if not identical for

both wavenumber resolution choices; this indicates the minimum λ at the middle of troughs

are robust against increasing wavenumber resolution and this reasoning also applies to the

plateaus of rational ι-rs. The ι-rs at the middle of plateaus have therefore been found at

lower wavenumber resolutions and represent lower-order rationals. Put another way, the

low-order rationals inhabit the zero slope (plateau) areas of ι- while lowest-order rationals

are in the middle of plateaus.
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Figure 3.25: λ with ∆m = 0.3 and ∆κ = 0.3 (orange line), and λ with machine-precision
wavenumbers (blue line).

Finally, we prove that the findings so far in terms of high-order rationals (or large

wavenumber values) and least instability are valid for the full dataset of Fig. 3.14. The

Mathematica function Rationalize is used to obtain −mκ in the form of p
q ; p, q ∈ integers.

Fig. 3.26 is the result of scanning the wavenumbers associated with all minimum λ data

points. Any ι-rs rational consisting of a numerator or denominator value of over 10 (dotted

gridlines) and 20 (solid gridlines) is marked with a gridline. As expected, Fig. 3.26

demonstrates that higher-order rationals dominate least unstable minimum λ.

In conclusion, least unstable minimum λ values consist of high-order rational resonant

surfaces or ι-rs, and most unstable minimum λ values are related to low-order rationals.
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(a) Positive ι-interface region.

(b) Negative ι-interface region.

Figure 3.26: Minimum λ data points of high-order rationals.
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3.5.4 Can the wavenumbers for marginal stability, λ = 0 assist in inves-
tigating the rationality of ι-interface?

From the analysis in previous Sections, minimum stability is determined by the resonant

surface rotational transform, where a high-order rational, or large wavenumbers, contribute

to a less unstable system. It was also determined that instability seen by the plasma-slab

system in the region of minimum λ, is due to tearing instability.

However, both of these observations are linked to resonances within the plasma; we

now endeavour to analyse the rotational transform of the interface ( ι-interface) between

plasma and vacuum which is an ideal MHD surface. The resulting analysis detailed in

this Section will show that system marginal stability correlates with lowest-order rationals

in a wavenumber set, while previous findings of minimum λ and its relation to high-

order rationals are seen once again. The identification of high and low-order rationals

are performed via the plateaus and plateau jumps, or Devil’s Staircase theory, which also

appear in this Section.

We begin the analysis by using m = 1 as a starting point in analysing λ = 0; a fixed

m allows minimum λ to reach marginal stability. Fig. 3.27 shows minimum λ calculated

once again with ∆κ = 0.3 and ∆κ = 0.1. Peak stability points for λ∆κ=0.3 are marked as

λP and marginal stability is λZ .

From Fig. 3.27, the property N(λz) or number of λz is dependent upon 1
∆κ and is

visually noticeable. The minimum λ peak and trough characteristics, and the number of

peaks, are more pronounced when compared to minimum λ using smaller ∆κ, i.e. purple

data points using ∆κ = 0.1.

Fig. 3.28 shows the resonant surfaces for minimum λ going through a transition

between xrs < 1 and non-existent xrs (as explained previously by Fig. 3.8) for data

points of ∆κ = 0.3. The horizontal gridline at xrs = 1 (or xinterface) marks the boundary

between plasma and vacuum. The lines annotated as λP and λZ are overlaid from Fig.

3.27. The gaps between λP and λZ in Fig. 3.28 are due to no xrs in the plasma region,

and corresponds with stability (no tearing instability).

Figure 3.27: Minimum λ for m = 1, ∆κ = 0.3 (orange points), ∆κ = 0.1 (purple points).
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Figure 3.28: Location of resonant surface in the plasma-vacuum model for m = 1,∆κ =
0.3.

Now that minimum λ exhibits marginal stability values and the nature of their resonant

surfaces are known, we proceed to utilise k ·B = 0 for further analysis. It was shown in

previous Sections that marginal stability, λ(xinterface) = 0 is equal to k ·B = 0. Therefore

the wavenumbers and ι-interface required for marginal stability can be easily obtained via

the latter equation.

Fig. 3.29 displays the relationship between λ and k ·B, where the lowest magnitude

of k ·B is calculated for the same choice of µ, m and ∆κ as provided for the minimum λ

data points of Fig. 3.27. The ∆κ choice also affects N(k ·B = 0) and will later inform

upon the number of plateaus and low-order rationals in Fig. 3.31.

Figure 3.29: k ·B for m = 1, and κ of each λmin datapoint in Fig. 3.27. The two datasets
are represented by the blue (∆κ = 0.3) and red lines (∆κ = 0.1), where λz = k ·B = 0.

Fig. 3.29 data points can now provide ι-interface via ι-k·B = −κ
m . Fig. 3.30a represents

these ι-k·B data points where a clear “staircase” pattern exists. Due to the pronounced

peak and trough characteristics seen in Fig. 3.27, predictably, Fig. 3.30b which represents

ι-rs also reflects a pronounced “staircase” effect.
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(a)

(b)

Figure 3.30: (a) ι-k·B for the blue k ·B datapoints of Fig. 3.29, and (b) ι-rs for minimum
λ of m = 1. The brown data points in (b) have no xrs within the plasma.

Fig. 3.30a exhibits the relationship between ι-k·B and λZ , while Fig. 3.30b compares

ι-rs and λP . It is firstly noted that previous minimum λ findings in terms of high-order

rationals are supported; the peak stability data points, λP , have rotational transforms

that are at the edge of ι-rs plateaus in Fig. 3.30b, where the jump between plateaus signify

a region of high-order rationals.

The second point of interest is that λZ is located in the middle of the ι-k·B plateaus

in Fig. 3.30a. The ι-interface of λZ is then of the lowest-order rational for its plateau, due

to the localisation of plateaus around low-order rationals (see Section 3.5.3). These two

findings are also supported by Hudson [23] in which highest-order rationals are furthest

from low-order rationals.

As presented in Fig. 3.31, the relationship between ι-k·B and λ = 0 in terms of rationals

is maintained for different ∆κ, where the red data points are the ι-k·B of ∆κ = 0.1. The

λZ locations for ∆κ = 0.3 are maintained as the middle of the new ∆κ = 0.1 plateaus.
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Figure 3.31: ι-k.B for ∆κ = 0.3 (blue line) and ∆κ = 0.1 (red line).

Fig. 3.31 indicates the number of plateaus, plateau transitions, and plateau widths are

determined by ∆κ; its fundamental physical significance lies in the increasing κ number set

with smaller ∆κ, which increases the subset of rationals for resonant surfaces in the plasma-

vacuum system both at minimum stability and marginal stability. Nevertheless, even with

a larger rational subset, the rotational transform of λ(xinterface) = 0 is consistently of a

low-order rational.

In summary, marginal stability corresponds with low-order rationals, and minimum λ

has further confirmation of dependency with high-order rationals.

As it is known that the rotational transform at x = 0 (bottom of plasma slab) identified

as θ will determine the value for ι-interface, θ = µ
4π is used in place of θ = µ

2 to discern if

ι-k·B=0 conforms to lowest-order rationals. Figs. 3.32 - 3.33 present the resulting minimum

λ and ι-k·B data. From the location of λZ in these Figures, ι-k·B=0 and subsequently,

λ(xinterface) = 0 do not depend on θ, but on lowest-order rationals for the plasma-vacuum

interface rotational transform.

Figure 3.32: Minimum λ with m = 1, ∆κ = 0.3 and θ = µ
4π .
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Figure 3.33: ι-k·B for k ·B with m and κ of each Fig. 3.32 λmin datapoints.

To conclude this Section, marginal stability and ι-interface are dependent upon low-

order rationals, and this is in contrast to minimum λ where its ι-rs requires a high-order

rational for maximum stability. The staircase pattern in ι-rs and ι-k·B with Devil’s Staircase

characteristics [27] has proven to be significantly useful in determining high-order and low-

order rationals.

Studying the behaviour of ι-interface in terms of higher-order rationals requires the addi-

tion of pressure, β, for the plasma region of our slab model. This may allow the inclusion

of pressure-driven instabilities such as sausage instabilities which contribute to marginal

stability conditions in terms of wavenumber values as shown in Fig. 4.24 of Boyd and

Sanderson [4], and the effects of β 6= 0 for the slab system is discussed in Section 3.9.
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3.6 Greene’s Theorem for Irrational ι-rs

The usage of ι- staircase attributes for high and low order rationals seems simple, yet has

provided an uncomplicated method to locate desired rationals. As specified in Section 1.2,

irrational ι-interface contributes to flux surface formations at the interface in 3D systems.

While the work in this Thesis does not address flux surface formation, it is of interest

to understand how irrationality affects minimised λ. This Section outlines a theorem for

identifying irrational numbers and its feasibility for the purposes of this Thesis.

Irrational numbers are classified as real numbers that cannot be represented as a

fraction. However, irrationals can be approximated as high order rationals [5], and so

with the staircase attribute of ι-, irrationals inhabit the regions of plateau transitions.

So while it is now known that ι-interface at λ = 0 is of a low-order rational and furthest

away from plateau transitions, this Section will proceed with the study of ι-rs in terms of

irrationals.

Reaching an irrational number for ι-rs is essentially not possible, as Mathematica has

a fixed digit size as with any computer-dependent program, and so cannot provide a truly

continuous irrational number. Greene’s theorem is a robust method of obtaining irrational

approximations, which is based on continued number fraction theory [23, 32]. Through

this theorem, an irrational approximation is characterised by an arbitrary length sequence

1’s in its continued fraction representation. For instance, the Golden Mean is the most

irrational number (or noble irrational) [31], and its continued fraction representation is

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...1∞}. Note that the irrational approximations do not require an

infinite sequence of 1’s.

Greene’s theorem, however, has a certain drawback, mainly the increase in compu-

tational time required to obtain precise irrational approximations. To demonstrate this

claim, a region of data is selected from the minimum λ data points introduced earlier on

in this thesis, namely Figs. 3.22c - 3.22d. This choice is due to the lack of a clear trough

region for this range of minimum λ, and hence less no clear plateau transition for the

identification of irrational approximations.

The analysis begins with Fig. 3.34, in which Fig. 3.34a represents a region of min-

imum λ selected and denoted by the vertical dashed gridlines. Fig. 3.34b shows the

corresponding ι-rs ∈ (0.909091, 1.03571) (marked by the red horizontal gridlines) for this

chosen minimum λ range. The solid red vertical gridline passing through the peak data

point of Fig. 3.22c is used as a guide to enable visual comparison of data points between

the Figures of Fig. 3.34.

Applying Greene’s theorem to ι-rs ∈ (0.909091, 1.03571) requires the Mathematica

function ContinuedFraction which provides the continued fraction representation of a

given number. The amount of decimal places in a given number corresponds to the length

of the continued fraction representation, i.e. π with its infinite decimals has an infinite

continued fraction representation. Ergo, to obtain a satisfactorily long string of 1’s in a

continued fraction representation, the numbers in a set must have many decimal places

and this can be achieved by ‘slicing’ the ι-rs range with a small ∆ ι- value, or ι- step size.

Through an iterative process, two continued fraction numbers which qualify as irra-

tional approximations are found in the ι-rs range and listed in Table 3.4. The ∆ ι- required

an increase from 10 steps as seen in Fig. 3.22d, to 12,662,338 equidistant steps, a factor

of over 1,000,000, to obtain these irrational approximations.

As ι- can be represented as a rational and hence provide m and κ, Greene’s Theorem

provides an estimate of the required wavenumber resolution to obtain precise irrational
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(a) Reproduction of Fig. 3.22c.

(b) Detailed view of Fig. 3.22d.

Figure 3.34

ι-rs Continued fraction representation

1.0261666790..... 1, 38, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1

1.0324160690..... 1, 30, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 11, 1, 2

Table 3.4: Irrational approximations in the ι- = 0.909091 − 1.03571 range, marked as
horizontal black lines in Fig. 3.34b.

approximations in any given ι- range. However, one immediately sees the computational

cost of obtaining irrational approximations from the difference in ∆ ι- required to obtain

just two ι-rs irrational approximations via a simple Mathematica function. As ∆ ι- also

translates to wavenumber resolution, the calculation time to obtain minimum λ will un-

doubtably increase if precise irrational approximations are of interest.

Furthermore, the irrational approximations found with Greene’s Theorem is not an
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input variable to study minimum and marginal λ, rather a naturally occurring system

output. This is in contrast to other literature studying the robustness of flux surfaces, e.g.

McGann et al. [32], Hudson [24] which require a prescribed ι- as a variable input.

In summary, Greene’s theorem allows the identification of irrational approximations

and estimation of required wavenumber resolution for any given set of real numbers, but

the required wavenumber resolution to achieve precise irrational approximations demands

a sharp increase in computational time. However, as Greene’s Theorem is based upon

high-order rationals to locate irrational approximations, it can be cautiously concluded

that the current method of identifying high-order rationals from the ι-rs characteristics via

plateau transitions as implemented in Section 3.5.3 and 3.5.4 is sufficient to guide further

study of resonant surfaces with irrational rotational transforms upon minimum λ in a

plasma-vacuum slab (see Chapter 4).
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3.7 Singularities of λ

In this Section we study the behaviour of λ with multiple resonances within the plasma

region as previously introduced in Section 3.4; this is achieved by plotting λ with respect

to an appropriately large range of µ as in Fig. 3.35. A periodic pattern emerges, along

with points of λ singularities.

Figure 3.35: Functions λ, χ̃(xrs → 1), and k ·B plotted over µ for κ = 1,m = 1, NA = 1,
and θ = − cot−1 µ

2 , with marked points of intersection with the x-axis.

We focus our attention to the region of µ denoted by λ1 − λ2 in Fig. 3.35 as this

region is where the first instances of instabilities and singularities start to develop along

the x-axis, and also observe that it is the first region of magnetic field reversal, B.

The variable χ̃(xrs → 1) of −∆′ is also periodic in nature where χ̃ = 0 occurs at

intervals of µ =
√
m2 + κ2 + (Aπ)2, A being an integer constant.4 Points of χ̃ = 0 are

distinguished by vertical grey gridlines in Fig. 3.35; χ̃ = 0 at A = 0 is external of the field

reversal range and χ̃ = 0 at A = 1.

The singularity λS at µ =
√
m2 + κ2 + (1π)2 is caused by interface perturbations,

expounded via the Rayleigh-Ritz method [28] applied upon the Lagrangian of ideal MHD

[11]:

L =

∫
L d3τ, (3.7)

L =
1

2
ρ(v · v∗)− p

γ − 1
− B2

2µ0
, (3.8)

where Eq. (3.8) is the Lagrangian density [29], its terms identified in Eq. (2.1) and also

define δ2W (see Section 3.3). The first term represents kinetic energy, where ρ is mass

density and v is fluid velocity from the interface perturbation. Rewriting the kinetic energy

term with respect to the interface perturbation and ρ as a dyadic tensor [33] produces the

following:

4Although −∆′ cannot be directly compared to λ in terms of stability in the presence of multiple
resonances, its constituent equations can shed light on λ instabilities.
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ρ = δ(x− a)x̂x̂, a is the plasma-vacuum interface, (3.9)

v =
dξ

dt
, (3.10)

ξ ∝ eiωt. (3.11)

The choice of ρ has roots in Newcomb’s stability analysis [35] (further introduced in

Section 3.8) where the radial component of ξ5 is of interest due to the quadratic form of

W(ξ) in Newcomb [35] and thus of L of Eq. (3.7). The kinetic energy term of Eq. (3.7)

becomes:

1

2

∫
ρ(v · v∗) d3τ = ω2 1

2

∫
|ξx|2 d2σ, (3.12)

where ω2 = λ and ρ is an arbitrary constant, i.e. 1. In a plasma in which the mass is

loaded at the interface and the mass density is unity,
√
|λ| for λ > 0 is the oscillating

frequency, while
√
|λ| for λ < 0 represents the growth rate. The Rayleigh-Ritz method

then produces the following equation from Eq. (3.7):

λ =
potential energy

kinetic energy
, (3.13)

λ = extremum
δ2W

1
2

∫
x=a |ξx|

2 d2σ
. (3.14)

The kinetic energy term of interest ξx is selected by the dyadic form of ρ; this represents

the energy from plasma-vacuum interface perturbations and is described by χ̃(x→ 1). The

term δ2W is characterised by χ̃(x < 1) and so Fig. 3.36 visualises the terms of Eq. (3.14).

The values of χ̃(A = 0) = 0 and χ̃(x < 1) = 0 shown in Fig. 3.36a represent ξx = 0 and

δ2W = 0 respectively. Therefore λ via Eq. (3.14) is an indeterminate solution and does

not result in a singularity at A = 0 of Fig. 3.35. Whereas in Fig. 3.36b, χ̃(xrs → 1) = 0

and χ̃(x < 1) 6= 0 describe ξx = 0 and δ2W 6= 0 respectively; this results in λS = ∞ via

Eq. (3.14).

Fig. 3.37 provides a contour plot of λ, varied in terms of κ and µ with m = 1, and

exhibits the singularity of λ which occurs at µ =
√
m2 + κ2 + (1π)2. This equation will

be further explored in Section 3.8 as we compare MRxMHD with existing MHD theories.

5This term ξx is identical to ξi used in previous Sections, but the radial direction is emphasised here,
hence the variable change from i which denotes interface number, to x for the radial component.
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(a) χ̃ is zero across plasma-vacuum region for A = 0, κ =
1,m = 1, xrs → 1.

(b) χ̃ is nonzero across plasma-vacuum region for A =
1, κ = 1,m = 1, xrs → 1.

Figure 3.36: Dependence of χ̃ on x showing amplitude difference across the plasma-vacuum
region for A = 0 and A = 1 points as marked in Fig. 3.35.
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Figure 3.37: Contour plot of λ in the region of λS . Due to instabilities approaching +/−∞,
the ContourP lot function cannot generate contour lines for the white space.
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3.8 Comparison of Ideal MHD, Resistive MHD and MRxMHD

3.8.1 Ideal MHD theory

In Goedbloed et al. [14] and Goedbloed and Dagazian [16], the stability of an ideal MHD

plasma slab was shown to be dependent upon the inclusion of resistivity to allow for

physical perturbations of ξ. The work is crucial in demonstrating a unifying relationship

between ideal, resistive, and multi-region relaxed MHD.

Starting from the ideal MHD theory perspective, a pressureless plasma slab between

two perfectly conducting surfaces is investigated [14, 16]. Minimising the energy, W with

respect to interface perturbations, ξ as prescribed by Newcomb [35] results in a stable δW
solution for every ξ, implying no instabilities exist.

Reformulating δW in terms of magnetic field perturbations6, b requires Eq. (2.8) and

a Beltrami field ∇ × B = µB. The solution for b in an ideal MHD plasma-only slab

is shown to be dependent upon
√

(µ2 − k2
0)L > Aπ which is known as the instability

criterion; k2
0 = k2

y + k2
z , from which ky = m and kz = κ and A is an integer [14, 16]. The

wavenumbers can be written as m = k0 cosφ and κ = −k0 sinφ, with φ defined in Fig.

3.38. The plasma region distance between the two perfectly conducting interfaces is L,

equal to the plasma-vacuum interface, xinterface in MRxMHD analysis.

Figure 3.38: Wavenumber directions according to Fig. 2.1 and B.

Plotted in Fig. 3.39 is the instability criterion, equivalent to µ >
√
m2 + κ2 + (Aπ)2,

and the λS singularity in Section 3.7 occurs when µ =
√
m2 + κ2 + (Aπ)2. Shaded regions

of Fig. 3.39 represent regions of instability for different choices of A under the condition

k2
0 < µ2, but as cautioned by Goedbloed et al. [14] and illustrated in Fig. 3.40, the trial

function bx:

bx = iFξx, (3.15)

F = k ·B = αko cos(µx+ θ − φ), (3.16)

of δW(b) results in an unphysical ξx singularity when F = 0. The value of φ and θ dictate

F = 0 radially within the plasma. For instance, θ = 0 and φ = π/2 allows F = 0 at

x = 0 and F = αko sin(µx). To simplify analysis, all further plots have θ = 0. Hence, the

shaded regions of instability shown by Fig. 3.39 are also regions of ξx singularity but are

incompatible with ideal MHD theory.

6Variables have been changed to streamline their meaning and usage with MRxMHD equations.
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Figure 3.39: Instability criterion diagram for L = 1 and varying µ. The vertical gridline
labels µ = π.

(a) (b)

Figure 3.40: Behaviour of sinusoidal F (blue line) and ξx (orange line) across the plasma
region for (a) A = 1 or µ = π and (b) A = 2 or µ = 2π.
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3.8.2 Resistive MHD theory

The singular points of ξx must be addressed explicitly to make sense of unstable regions

in Fig. 3.39, and so we refer back to Newcomb [35]. The singular points of F = 0 divide

the plasma region into subintervals and so the Euler-Lagrange equation of W, or the

Newcomb equation, requires evaluation in these subintervals separately as the equation

cannot continue over a singular point7. The Frobenius method is then employed to obtain

large and small solutions of ξ on either side of the singular point [33]. The separate

solutions from the subintervals is analogous to tearing instability theory which requires

separate solutions for χ̃ on both sides of a resonant surface; χ̃′′ is the small solution while

χ̃′ is the large solution.

Indeed, it is shown in Goedbloed et al. [14] that Fig. 3.39 unstable regions can be

accessed with tearing instability theory as the displacement becomes physically realisable

with resistivity and reconnection across a resonant surface, thus moving away from ideal

MHD to resistive MHD theory. As the ideal MHD energy formulation from the Newcomb

stability analysis has shown a completely stable system, we will proceed with the tearing

instability theory reconstruction in terms of helical flux perturbation for a plasma-only

slab. With the boundary conditions of χ̃(x = 0) = 0 and χ̃(x = xwall) = 0, the solution of

Eq. (2.19) and (2.15a) for the case of k2
0 < µ2, or Fn are:

χ̃ = C sin(x
√
µ2 −m2 − κ2), (3.17)

−∆′ =
√
−m2 − κ2 + µ2(− cot(x

√
−m2 − κ2 + µ2) + cot((x− L)

√
−m2 − κ2 + µ2)),

(3.18)

where C is a coefficient, L is the plasma region length, and x = xrs = L
2 . The usage of

xrs = L
2 positions F = 0 (resonant surface of interest) at the maximum point of bx as

shown in Fig. 14.4 of Goedbloed et al. [14]. Fig. 3.41 plots the comparison between −∆′

of Goedbloed et al. [14], given as:

−∆′ = 2L
√
µ2 − k2

0 cot(0.5L
√
µ2 − k2

0), (3.19)

and Eq. (3.18) where the shaded areas represent regions of tearing instability. Both

Equations provide identical instability regions and are mathematically equivalent. The

regions in Fig. 3.41 are dependent upon
√
µ2 − k2

0L > Aπ as −∆′ changes sign at every

Aπ, resulting in bands of negative and positive tearing instability regions. The instability

criterion of Fig. 3.39 is redefined as a tearing instability diagram from the identical

dependence on the stability boundary
√
µ2 − k2

0L > Aπ [14].

Fig. 3.41 with its vertical gridlines also show the reduction in L allows for a higher µ

limit before the tearing unstable regions are accessed. The plasma length L dictates the

µ required for F = 0 and the ξx singularity to occur radially in the plasma. For L = 1

and θ = 0, the tearing instability limit for the plasma-only slab is µ >
√
m2 + κ2 + (π)2

(or µ > π for k0 → 0). In contrast, an m = 0 cylindrical, force-free plasma system

[13]8 exhibits a symmetrically unstable region for which the tearing instability limit is

µ > 3.832.

Fig. 3.42 compares the original plasma-vacuum slab introduced at the beginning of

7This is further addressed in Dewar et al. [10] which allows continuation of the Newcomb equation
across the singularity.

8This work also provides the basis of the ideal MHD limit, µ > 3.172, among other works ([39, 41]).
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this Thesis to the plasma-only slab in terms of −∆′. By visual inspection, the regions of

tearing instability are qualitatively in agreement for overlapping areas, and some regions

that were previously unstable in the plasma-only slab are now stable in the plasma-vacuum

slab and vice-versa. The difference is due to the presence of vacuum; the plasma-vacuum

interface is not locked to zero, providing additional freedom for the plasma to be unstable.

Fig. 3.43 shows the stability region of a plasma-vacuum slab converges to the plasma-only

slab stability region by reducing the vacuum region arbitrarily close to the plasma-vacuum

interface. This forces χ̃+ (Fig. 2.3) at L = 1 to be zero, matching boundary conditions

imposed on the plasma-only slab.

(a) (b)

Figure 3.41: Tearing instability regions for a plasma-only slab with Eq. (3.18) and Eq.
(3.19) (a) L = 1, xrs → 0.5 and (b) L = 0.5, xrs → 0.25. Both tearing calculations utilise
φ = π

2 for F = ko sin(µx). The stability boundaries are marked with their respective −∆′

values.

(a) (b)

Figure 3.42: Tearing instability diagrams for plasma-only (grey region) and plasma-
vacuum (cyan region) slabs with (a) L = 1, xrs → 0.5 and (b) L = 0.5, xrs → 0.25.
Both tearing calculations utilise φ = π

2 for F = ko sin(µx).
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Figure 3.43: The plasma-vacuum stability plot of Fig. 3.42a when xwall = 1.0001. The
plasma-vacuum stability plot converges back to the plasma-only stability plot of Fig. 3.41a.
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3.8.3 MRxMHD theory

A direct comparison between −∆′ and MRxMHD for a plasma-only slab is not explored

due to MRxMHD boundary conditions. Trivially, the lack of an interface no longer pro-

vides the ‘multi-region’ component required for MRxMHD λ calculations. Indeed, there

is no stability problem for MRxMHD with no interface. To circumvent this issue, a

MRxMHD plasma-only slab can be constructed by reducing the plasma-vacuum slab vac-

uum region to zero, resulting in λ→ +∞ due to vacuum b boundary conditions of b = 0

at the wall, and b 6= 0 at the plasma-vacuum interface (see Eq. (2.6c)). With the vac-

uum region approaching zero, vacuum b becomes infinite to accommodate its boundary

conditions, resulting in vacuum B · b = +∞ in Eq. (2.6b), and thus λ = +∞. The value

of plasma n · b at the MRxMHD interface is also nonzero, inconsistent with boundary

conditions imposed on the plasma-only slab perturbed field, and prohibiting comparison

of −∆′ and MRxMHD for a plasma-only slab.

However, the relationship between −∆′ and λ for a plasma-vacuum slab has been well-

analysed in previous Chapters. As both stability models are in agreement for µ < π,

we proceed to explore the µ > π limit in terms of Newcomb’s stability analysis and the

(µ− k0) stability space for the two models.

In Newcomb [35], the stability analysis for a pressureless plasma-vacuum system is

studied; the energy of the vacuum region can be written as:

Wv =
1

2

∫
d3τ(∇×A)2, (3.20)

with interface boundary condition:

n×A = −(n · ξ)B, (3.21)

where A = ξ×B, commonly referred to as the Newcomb gauge [33] and incorporated into

MRxMHD by Eq. (2.8), which defines ξ across both plasma and vacuum regions. With

this gauge, ξ is allowed to be singular in MRxMHD as it no longer represents real fluid

displacement.

We now proceed to compare λ and −∆′ in the µ > π limit with the knowledge that F =

k ·B = 0 occurs at xrs → L, as discussed in previous Sections. Fig. 3.44 shows complete

agreement of unstable regions between λ and −∆′ when xrs → L; unstable regions begin

at F = 0 (the vertical region boundaries). Fig. 3.45 also represents a slice of Fig. 3.44a

marked by the horizontal black line (note λS singularities at µ =
√
m2 + κ2 + (Aπ)2). In

Fig. 3.44a, µ > π is the lowest tearing instability limit for the plasma-vacuum slab, while

the limit is µ > 2π for Fig. 3.44b.

Firstly, recall that in Section 3.5.1 the initial findings for minimum λ whereby the

minimum system energy was unstable for any choice of µ (see Fig. 3.14a). However, this

clearly does not hold in Fig. 3.44 where λ is stable in the µ < π region. The physical

reasoning is based upon the location of F = 0 along the µ-axis dictated by m and κ, or

ko and φ (with θ = 0). In the case of Fig. 3.44a, φ = π
2 produces the tearing instability

limit of µ > π. The calculations for minimum λ in Fig. 3.14a utilises a range of m and κ

to find a lowest energy state for all µ; λ with fixed φ restricts the wavenumber range, i.e.

φ = π
2 sets m = 0, and only some λ(µ) will be unstable.

Secondly, Fig. 3.46 is an overlap of Fig. 3.44a and Fig. 3.42 plasma-vacuum slab

−∆′ stability plots. The stability discrepancy stems from the multiple resonances of the

q-profile as discussed in Section 3.4 which begin to occur after the µ > π limit. Only one
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(a) λ(L = 1, φ = π
2 ) and −∆′(L =

1, xrs → 1, φ = π
2 ).

(b) λ(L = 0.5, φ = π
2 ) and −∆′(L =

0.5, xrs → 0.5, φ = π
2 ).

Figure 3.44: Overlapping instability criterion diagrams of λ (purple) and −∆′ (cyan). λ
and −∆′ show complete agreement of unstable regions.

resonant surface is accounted for the single resonant surface −∆′ calculation used in this

Thesis9, and so −∆′ is only in agreement with λ when xrs → L, as both models exhibit

instabilities in this limit (see Figs 3.6 - 3.7).

To understand this finding in depth, the scenario L = 0.75, φ = π
4 is selected for λ

and −∆′. The choice of φ is to ensure m and κ are non-zero values, whereas the special

cases φ = π/2 or 0 results in either m or κ vanishing. For the −∆′ model, L = 0.75 and

two resonant surface choices are selected: xrs → 0.75, and xrs → 0.25. Fig. 3.47 shows the

latter being the maximum value of F labelled by the dashed vertical gridline.

Fig. 3.48 compares the stability regions of λ(L = 0.75, φ = π/4),−∆′(L = 0.75, xrs →
0.75, φ = π

4 ) and −∆′(L = 0.75, xrs → 0.25, φ = π
4 ). As expected, the tearing unstable

regions match for xrs → L, and do not match for an xrs further away from L.

Taking a data point specified by the cross in Fig. 3.48b where λ 6= −∆′ provides

the variables µ = 5, k0 = 1.41421, in turn represents m = 1, κ = −1. Fig. 3.49

provides a clear interpretation of the stability region discrepancy in terms of resonances

from this data point. The sign of λ and −xrs∆
′ at xrs = 0.25 at the vertical gridline are

opposite (λ is stable while −xrs∆
′ is unstable). This difference is due to the tearing mode

treatment which does not consider multiple resonances present for µ ≥ π (see Section

3.4). The singularity of −xrs∆
′ at xrs → 1 is influenced by the jump in µ across the

plasma-vacuum boundary (see Section 3.2), hence always negative and results in identical

stability conclusions as λ.

In summary, ideal MHD theory with its singular perturbation ξ in a pressureless plasma

slab does not exhibit any ideal nor resistive instabilities. With the introduction of resistive

MHD theory, the perturbation is allowed to ‘relax’ and enter a lower energy state which

admits resistive instabilities, i.e. tearing instability. The tearing instability criterion of a

plasma-vacuum slab smoothly connects with that of a plasma-only slab, with structure

differences in stability space (Fig. 3.42) attributed to the existence of the vacuum region.

Tearing stability space also only agrees with MRxMHD stability space when the resonant

9Unless a multi-resonant −∆′ calculation is utilised.
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Figure 3.45: The Fig. 3.44a λ slice marked by a horizontal black line, is plotted here
across a µ-range, for m = 0, κ = 5 which is equivalent to ko = 5, φ = π/2. The vertical
dashed lines label integers of π.

surface of interest is close to F = 0 due to the tearing mode treatment not considering

multiple resonances. Hence, MRxMHD theory unifies both ideal and resistive MHD per-

turbations, allowing singular perturbations [33], resistive and ideal instabilities to develop

(the latter being dependent upon system geometry). MRxMHD also automatically caters

for multiple resonances (in contrast with tearing instability calculations) and provides

minimum energy information.
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Figure 3.46: Overlapping instability criterion diagrams of −∆′ for L = 1, xrs → 1 (purple
region) and L = 1, xrs → 0.5 (cyan region).

Figure 3.47: The function F across the plasma region for L = 0.75, φ = π
4 , showing the

maximum amplitude point labelled by the dashed vertical gridline.

(a) λ(L = 0.75, φ = π
4 ) and −∆′(L =

0.75, xrs → 0.75, φ = π
4 ).

(b) λ(L = 0.75, φ = π
4 ) and −∆′(L =

0.75, xrs → 0.25, φ = π
4 ).

Figure 3.48: Overlapping instability criterion diagrams of MRxMHD λ (purple) and tear-
ing instability −∆′ (cyan) for (a) xrs → 0.75 and (b) xrs → 0.25.
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Figure 3.49: The two models, λ and −∆′ with m = 1, L = xinterface = 0.75 over a κ range
on the x-axis. The vertical gridline represents −xrs∆

′ where xrs = 0.25, while the linear
blue line is k ·B and zero at xrs → 1.
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3.9 Introducing Pressure Effects

The stability conclusion for λ in previous Sections utilise β = 0 for zero plasma pressure.

In Section 3.5.4, it was cited the inclusion of pressure may allow the study of marginal

stability at higher wavenumbers. This Section studies the consequence of nonzero plasma

pressure on λ, comparing its results to −∆′ and existing literature for cylindrical, or Bessel

function models [21, 25].

We begin by introducing work conducted by Spies and Lortz [36] which encompassed

the stability of a relaxed plasma-vacuum slab in terms of µ and wall ratios, or the distance

of the vacuum wall from plasma interface. Here, a slab system is stable, δ2W > 0 if,

µLN < µ < µSP , (3.22)

l̃µL sinµL− 4 sin δ sin(µL+ δ) = 0, (3.23)

where µLN is the largest negative root of Eq. (3.23) and µSP is the smallest positive

root, the latter being the root of interest [36]. The variable l̃ is linked to β through the

equation l̃ = l(1 − β) and wall ratio, l = (Lx−L)
L [25]. The vacuum wall distance is Lx,

plasma-vacuum interface is L, and the jump in magnetic field rotational transform across

the plasma-vacuum interface is δ (see Eq. (2.10))

Fig. 3.50 shows Eq. (3.23) with β = 0 over a range of l with fixed L = 1, and is

equivalent to Fig. 1 in Spies and Lortz [36].

Figure 3.50: Stability space diagram of Eq. (3.23), β = 0. The region underneath a curve
represents stability.

The y-axis of Fig. 3.50 represents µ and the blue curve represents µSP (δ), therefore

the region underneath a curve is where δ2W > 0. An increase in l̃(β = 0) is akin to moving

the vacuum wall location further away from the interface, which results in a reduction of

stability space as shown in Fig. 3.50.

With the addition of pressure, and l = 0.1 where Lx = 1.1, L = 1, Fig. 3.51 illustrates

the stability space difference between β = 0 and β = 0.9. For β = 0.9, the stability

space has increased and is equivalent to the l = 0 curve of Fig. 3.50. This implies that

an increase in plasma pressure with fixed vacuum wall correlates to a pressureless plasma
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slab with a reducing vacuum region, contrary to the Appendix in Kaiser and Uecker [25].

Figure 3.51: Eq. (3.23) for β = 0 (dashed line) and β = 0.9 (solid line).

To compare the findings of Eq. (3.23) with MRxMHD λ, recall the pressure jump

condition Eq. (2.6b) for nested flux surfaces where
[[
p+ 1

2B
2
]]

, and p can be rewritten

in terms of β (see Section 2.1). Changes in pressure modifies the magnetic field [42] via,

J ×B = ∇P. (3.24)

The term ∇P is constant across a nested flux region in MRxMHD, but a pressure

change at the interface of two regions is allowed. The β term also surfaces in Eq. (2.9)

and (2.10); nonzero magnetic field strength of B is only dependent on the magnetic field

magnitude α, and β via:

B = {0, By, Bz}, (3.25)

BP : ±α, (3.26)

BV : ±

√∣∣∣∣ α2

1− β

∣∣∣∣. (3.27)

As decreasing l is equivalent to increasing β, Fig. 3.52 presents λ with β = 0 and

three l options. It can be seen that the area of instability over a κ wavenumber range is

reduced with lower l. Most importantly, marginal stability λ = 0 at k ·B = 0 is unchanged

with different wall ratios; β 6= 0 does not affect the wavenumbers associated with λ = 0

at xrs → 1 and this implies there are no pressure-driven instabilities in the slab. Low-

order rationals of marginal stability λ = 0 at k ·B = 0 (see Section 3.5.4) are therefore

unchanged with increasing plasma pressure.
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Figure 3.52: Stability of λ with various wall ratios, using m = 1, µ = 2, β = 0, δ = 0, and
θ = − cot−1 µ

2 .

Fig. 3.53 also shows the minimum stability of MRxMHD λ across a (δ − µ) plane

from β = 0 − 0.9, calculated with the following ranges and resolution; 0 < δ < 3 with

∆δ = 0.5, and 0 < µ < π with ∆µ = π
10 . The range and step size of wavenumbers are

−20 < m < 20, and −20 < κ < 20 with ∆m = 0.3,∆κ = 0.3. The lowest values of λ, or

minimum λ are collected and provide data points for marginal stability boundaries to be

plotted via Mathematica’s InterpolationOrder function10 in Fig. 3.53.

Figure 3.53: Stability space diagram for minimum λ with varying β. Shaded areas repre-
sent stability for β = 0, 0.3, 0.9.

10The function provides a more accurate representation of stability regions with increasing data points
or higher resolution.
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Figure 3.54: Unstable region (shaded) in the (δ − µ) plane for a cylindrical model, with
fixed vacuum wall distance and (a) β = 0.1, (b) β = 0.4, (c) β = 0.5, (d) β = 0.8. Kaiser,
R. and Uecker, H., 2004. Relaxed plasma–vacuum states in cylinders. The Quarterly
Journal of Mechanics and Applied Mathematics, 57, 1 (2004), 1–17.

By visual inspection of Fig. 3.53, the stable region of λ across the (δ−µ) plane expands

with increasing β. This is in contrast to the stability space diagram of cylindrical models

where increasing β resulted in a rapidly decreasing stability space, characterised by the

total loss of a stable region by β = 0.8 in Fig. 3 of Kaiser and Uecker [25], reproduced

here in Fig. 3.54. From β = 0 − 0.9, the stability space of λ in Fig. 3.53 has increased

in size without a rapid change as depicted in the cylindrical stability space diagrams and

corroborated by the relatively small stability space increase between β = 0 and β = 0.9 of

Fig. 3.51. It is also noted from Fig. 3.53 and Fig. 3.54 that δ > 0 allows for the minimum

energy of the slab model to enter a stable region, and is no longer tearing unstable for all

non-zero µ as stated in Section 3.5.1.

The increase in stability space of Fig. 3.53 stems from the MRxMHD Eq. (2.6b)

where ξ∗i ξi[[B(n ·∇)B)]] is dependent upon the curvature vector of field lines, or magnetic

curvature, κ = (b̂ · ∇)b̂, where b̂ = B
B [36, 43]. For a slab model, ξ∗i ξi[[B(n · ∇)B)]] = 0 as

magnetic curvature is zero, simplifying Eq. (2.6b) to ξ∗i [[B · b]]− λξ∗i ξi = 0. The vacuum

region magnetic energy increases with β > 0 while the plasma region magnetic energy

remains unchanged (see Eq. (2.10)), resulting in increased total system energy. However,

this is not the case for a cylindrical model where curvature is nonzero. If the component

of κ normal to the plasma-vacuum interface (κ ·n) is negative, the curvature is directed to

the plasma interior. This is termed an unfavourable curvature and becomes a destabilising

source, which may result in pressure-driven instabilities [4].

In summary, contrary to cylindrical plasma systems, the presence of non-zero pressure

increases plasma-vacuum slab stability due to the lack of field curvature in a slab. Marginal

stability for xrs → 1 does not experience a change in wavenumber conditions, owing to the

lack of pressure-driven instabilities without field curvature.
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3.9.1 Discrepancy between tearing instability and MRxMHD models
for nonzero pressure scenarios

A discrepancy was discovered between the variational method and the tearing mode calcu-

lations used for a Bessel model [22] with the inclusion of pressure terms. This discrepancy

is confirmed in our working for the Cartesian model by varying the β and α value used in

both λ and −∆′ models for Fig. 3.55. With the β = 0 case, both models wholly agree,

but with increasing β, Fig. 3.55a and Fig. 3.55b show marginal stability discrepancy,

observed by the position of λ(β = 0.8) = 0 with respect to the zero crossing of −xrs∆
′.

Both models experience a change of marginal stability points along the x-axis, but the

rate of change is not identical with varying β.

(a) λ with increasing pressure for µ = 2.5. Black line uses β = 0, increasing β = 0.2, 0.4, 0.6, 0.8
from right to left.

(b) −xrs∆′ with increasing pressure for µ = 2.5. Black line uses β = 0, increasing β =
0.2, 0.4, 0.6, 0.8 from right to left.

Figure 3.55
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Assessment of this discrepancy firstly investigates pressure jump condition effects, Eq.

(2.3) on tearing instability flux perturbations. As expected, Fig. 3.56 shows the plasma

region flux perturbations are sensitive to pressure change, while the pressureless vacuum

region flux perturbations are unchanged. The plasma-vacuum interface is at x = 1, and

xrs = 0.9.

Figure 3.56: χ̃ across the plasma and vacuum regions with κ = 1,m = 1, µ = 2.5. Non-zero
β has affected χ̃ amplitude change only in the plasma region as expected.

Fig. 3.57 shows the disparity between λ and −xrs∆
′ for β = 0.8, where the zero

crossings for both models are no longer identical as seen for β = 0 scenarios. While

λ = 0, xrs < 1 no longer corresponds to −xrs∆
′ for β 6= 0, the wavenumbers associated

with λ = 0, xrs → 1 are unaffected by changes in pressure, as previously shown by Fig.

3.52, and is also displayed in Fig. 3.55a with the location of k·B = 0 along the wavenumber

axis.

Figure 3.57: λ and −xrs∆
′ zero crossings for β = 0.8 are no longer in agreement.

The discrepancy may lie in Taylor’s relaxation theory, in which kinetic energy terms

have been removed [36]. Efforts to incorporate kinetic energy into the MRxMHD frame-

work have been outlined in Section 4.1.
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Chapter 4

Conclusions and Future Work

In conclusion, the work in this Thesis has demonstrated MRxMHD theory is equivalent to

tearing instability theory for pressureless plasma-volume regions in terms of wavenumbers

and system stability. The method outlined in the Results present a general numerical

option for identifying high and low-order rationals to measure rotational transforms in a

slab model, along with its effect upon λ.

To summarise the main findings in this Thesis:

1. The minimised energy state of a plasma-vacuum slab system is driven by resonant

surfaces within the plasma and not purely by interface rotational transforms; reso-

nant surfaces with large rational denominators and numerators p and q, or high-order

rationals contribute to λ values which signify system stability. Therefore, MRxMHD

has inbuilt tearing instability information such as the existence of magnetic islands.

2. Marginally stable solutions of λ = 0 at k · B = 0, or b = 0 have the smallest p

and q integers, which are the lowest-order rationals and represent the interface rota-

tional transform. In contrast, a 3D equilibria requires irrational interface rotational

transforms (see Section 1.2).

3. Both variational and tearing instability methods are in agreement for zero-pressure

scenarios, and instabilities in the slab model are identified as tearing instabilities

only (no ideal instabilities exist). In contrast, a cylindrical model exhibits tearing

and ideal instabilities [13].

4. Resistive MHD and MRxMHD stability values may differ, due to multiple resonances

in the plasma region of the slab not accounted for by resistive MHD calculations.

The fine structures found in the plasma-vacuum slab stability space (Fig. 3.42)

are attributed to the existence of the vacuum region which provides more freedom

for plasma-vacuum interface perturbation. Via resistive MHD calculations, plasma-

vacuum stability space converges back into a plasma-only stability space when vac-

uum region is decreased (Fig. 3.43). MRxMHD unifies existing ideal MHD and

resistive MHD theories, additionally providing minimum energy information and

automatically catering for multiple resonances.

5. The inclusion of plasma pressure has resulted in increasing system stability for a slab

model which is opposite to the decreasing stability effect of pressure in a cylindrical

model; this result is attributed to the lack of curvature in the slab model. The

interface rotational transform of an MRxMHD plasma-vacuum slab is unaffected by

pressure change.

77
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6. The discrepancy between MRxMHD and tearing instability theory previously found

for a cylindrical model in Hole et al. [22] has been confirmed to also exist in a plasma-

vacuum slab model. Future work is required to resolve the discrepancy between

the MRxMHD variational method and the tearing mode instability method when

pressure is non-zero, possibly via a new method prescribed by Dewar et al. [11] in

which pressure perturbations contribute to ω2, or λ.

These findings may have applications to the SPEC code and other research based

upon energy minimisation and flux surface rationality. Marginal stability of MRxMHD is

possible at plasma-vacuum interface of low-order rotational transforms.

4.1 Future work: A Lagrangian Variational Principle Method

In Dewar et al. [11], a new approach to the variational principle was put forth, utilising a

Lagrangian formulation of MRxMHD to provide Euler-Lagrange equations and boundary

conditions. Kinetic energy terms have been incorporated into MRxMHD dynamical equa-

tions and provides a new physical normalisation. The authors show that within relaxation

regions, MRxMHD supports steady flows and sound waves due to the decoupling of v

from B. A sample of the work is presented as follows:

A Lagrangian density, L is posited for a plasma system, where L = Kinetic Energy -

Thermal Energy - Magnetic Energy + Fixed Helicity:

L =
ρv · v

2
− p

γ − 1
− B ·B

2µo
+
A ·B
2µo

µ. (4.1)

The Euler-Lagrange equations from the first variation of Eq. (4.1) are:

p = τiρ, (4.2)

ρ
dv

dt
= −∇p, (4.3)[[

p+
B2

2µ0

]]
= 0, (4.4)

dρ

dt
= −ρ∇ · v, (4.5)

where τi is identified as the temperature of a plasma region, ρ is mass density, with all

other variables identical to Eq. (2.1). Velocity, v and mass density, ρ can be written as

plane wave solutions, i.e.:

v1 = ξ̇ei(kx−ωt), (4.6)

for a 3-dimensional Cartesian frame, where k = kx+ky+kz and x = xex+yey +zez. The

term ω represents oscillations in a system, t represents a point in time, and ξ̇ represents

complex amplitude for interface displacement. Substituting Eq. (4.2) into (4.3), and

linearising (4.3) and (4.5) gives the first order terms,
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ρ
∂v1
∂t

= −τi
∂ρ1

∂x
, (4.7)

∂ρ1

∂t
= −ρ0

∂v1
∂x

. (4.8)

Eq. (4.7) and (4.8) are multiplied with ∂
∂t and ∂

∂x respectively:

ρ
∂2v1
∂t2

= −τi
∂ρ1

∂x∂t
, (4.9)

∂ρ1

∂x∂t
= −ρ0

∂2v1
∂x2

, (4.10)

and substituting Eq. (4.10) into (4.9) with ∂
∂t = −iω and ∂

∂x = ik results in the dispersion

relation ω =
√
τk, where τ = C2

s , the isothermal sound speed, and k is a wavenumber

vector.

The boundary conditions are v1ex = 0 at the edge of the plasma and at the vacuum

wall, similar to the boundary conditions of the variational method and tearing mode

calculations. At the interface, v1ex = ξ̇.

By linearising the interface condition Eq. (4.4), the eigenvalue ω is consequently a

function of pressure perturbations. As ω2 = λ [4], stability information is gained for com-

parison against the variational method we have used in this body of work. For positive λ,

ω is real and the system is stable, while negative λ results in imaginary ω. In the latter

instance, it is expected that the wavenumber kx is generally complex, and corresponds to

radially evanescent or growing waves. This new Lagrangian variational principle method

may resolve the difference between tearing and variational calculations in a non-zero pres-

sure system as a suggestion for future work, as Taylor’s relaxation theory does not account

for thermal and kinetic energy [36].

4.2 Other Avenues for Future Work

Other avenues for future work also include plotting Poincaré plots with the high and low-

order rationals of rotational transforms across the plasma-vacuum slab; the formation of

magnetic islands or chaotic regions around low order rationals within the plasma region

is an expected outcome from this exercise [32]. It may also show that the high-order

rationals are sufficient as irrational approximations in terms of flux surface robustness

against perturbations.

The slab model may also be modified to include gravitational forces as a way of sim-

ulating field curvature found in cylindrical models, as described for ideal MHD with in-

terchange instabilities in plane geometry [4]. This work may allow an analytical link of

slab results to cylindrical model results, as well as investigating the effects of gravitational

and interchange instabilities on the flux surface rotational transform in the MRxMHD

framework.

An interesting branch of study encountered during the course of this Thesis was the

theory behind the Devil’s Staircase and its emergence in dynamical systems, condensed

matter physics [27], and of course, plasma physics [7]. The Devil’s Staircase along with

its rationals may have deeper connotations for chaotic regions and resonances in plasma

systems. As chaotic regions may exist in tokamaks and stellarators, the resonant surface

rotational transforms of these models with respect to minimum energy may be worth



80 Conclusions and Future Work

analysing for any relationship to a Devil’s Staircase.
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